990 resultados para Contaminated areas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Petroleum and its subproducts are considered a treat for the environmental quality because of the many environmental accidents that may occur during exploitation, transport and storage. A common remediation technique used in the contaminated areas is based on the use of surfactants, mainly the chemical ones, because they have low production costs. In the other hand, some microorganisms have indicate capacities of producing surfactants that emulsify substances and as result, offer a bigger contact surface for the microbiota degradation. This biossurfactants stand out in comparison with the chemical surfactants because they present lower micelar concentration values, are more tolerant for temperature and pH variation, because they are biodegradable, have low toxicity, higher emulsification and hydrocarbon solubilization index. In this way, after the surfactant application, a toxicity evaluation have to be made to identify the treatment effects. In soil, the activity of some microbial enzymes can show the environmental behavior of the contaminant under different treatment conditions. Dehydrogenase is one example of those enzymes that can demonstrate indirectly the effect of the pollutant on the soil microorganisms. The aim of this paper was to evaluate the toxicity after the addition of a surfactant and/or Pseudomonas aeruginosa LBI in soil contaminated by a mineral automotive lubricant. The previous mentioned bacteria are a potential biossurfactant (rhamnolipid) producer. In order to evaluate the toxicity, the dehydrogenase test was run. In this test, trifeniltetrazolium compound (TTC) after utilized as an electron acceptor, turns into trifenil formazan (TPF), that can be indirectly quantified using the absorbance measured by the spectrophotometer UV-visible. In this way, it was possible to quantify the dehydrogenase activity from the contaminated soil samples... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The issue of solid waste disposal and urban growth are conflictive, since the areas where old uncontrolled refuse disposal were away from the city today are incorporated to the urban area population. Thus, now population is closer to the degradation of contaminants coming from waste disposal, and, in some cases, these areas become housing subdivisions. This work aims to support the diagnosis of a former landfill in the municipality of Rio Claro (SP), using geophysical methods through resistivity anomalies. In order to develop the diagnostic, it was utilized water and soil analysis of a preliminary report and techniques of vertical electrical sounding and electrical profiling. The areas influenced by the garbage presented less resistivity than the one of the natural subsoil. Through the interpretation of results, the local potentiometric map was elaborated, as well as a map of calculated resistivity. The interpretation of these products indicated a disagreement between the groundwater flow and the current topography, leading to an identification of a preferential direction of the contamination plume in the NE-SW. These observations prove the applicability of geoelectrical methods in areas of former waste disposal with little information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deconstructions, although hardly covered in Civil Engineering courses, are a very important field of study. Due to numerous factors, such as obsolescence, buildings life cycle comes to an end leading to their deactivations. Decommissioning is a process that intends to plan the hole deactivation by providing the cleaning of contaminated areas, avoiding risks to public health, as well as promoting a screening of generated waste, whether dangerous or not, offering their correct disposal or even reuse when possible. Decommissioning must be developed by a plan that covers from the recognition of the area until its releases to other uses. When this procedure is appropriate, attention must be paid to the cost effective of its implementation and to the cleaning standard that the plan intends to reach. The execution of the service allows to reuse the area, becoming productive again

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increase in the oil price and the current trend of using renewable raw materials for the production of chemicals renew the interest in the production of biobutanol that, produced by fermentation of agricultural raw materials, can be used as a component of gasoline and diesel. With the commercialization of new fuels, environmental damages due to spills can occur. Among other techniques, the clean-up of these contaminated areas can be achieved with bioremediation, a technique based on the action of microorganisms, which has the advantage of turning hazardous contaminants into non toxic substances such as CO2, water and biomass. Thus, bearing in mind the use of biobutanol in the near future as a gasoline extender and due to the lack of knowledge of the effects of butanol on the biodegradation of gasoline, this work aimed to assess the aerobic biodegradation of butanol/gasoline blends and butanol/diesel (20% v/v), being the latter compared to the ethanol/gasoline blend and biodiesel/diesel (20% v/v), respectively. Two experimental techniques were employed, namely the respirometric method and the redox indicator 2,6-dichlorophenol indophenol (DCPIP) test. In the former, experiments simulating the contamination of natural environments were carried out in biometer flasks, used to measure the microbial CO2 production. The DCPIP test assessed the capability of four inocula to biodegrade the fuel blends. In butanol/gasoline experiments the addition of the alcohols to the gasoline resulted in positive synergic effects on the biodegradation of the fuels in soil and...(Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biogas originated from anaerobic degradation of organic matter in landfills consists basically in CH4, CO2, and H2O. The landfills represent an important depository of organic matter with high energetic potential in Brazil, although with inexpressive use in the present. The estimation of production of the productive rate of biogas represents one of the major difficulties of technical order to the planning of capture system for rational consumption of this resource. The applied geophysics consists in a set of methods and techniques with wide use in environmental and hydrogeological studies. The DC resistivity method is largely applied in environmental diagnosis of the contamination in soil and groundwater, due to the contrast of electrical properties frequent between contaminated areas and the natural environment. This paper aims to evaluate eventual relationships between biogas flows quantified in drains located in the landfill, with characteristic patterns of electrical resistivity in depth. The drain of higher flow (117 m3 /h) in depth was characterized for values between 8000 Ω⋅m and 100.000 Ω⋅m, in contrast with values below 2000 Ω⋅m, which characterize in subsurface the drain with less flow (37 m3 /h), besides intermediary flow and electrical resistivity values, attributed to the predominance of areas with accumulation or generation of biogas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil e Ambiental - FEB

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mangrove ecosystems are tropical environments that are characterized by the interaction between the land and the sea. As such, this ecosystem is vulnerable to oil spills. Here, we show a culture-independent survey of fungal communities that are found in the sediments of the following two mangroves that are located on the coast of Sao Paulo State (Brazil): (1) an oil-spill-affected mangrove and (2) a nearby unaffected mangrove. Samples were collected from each mangrove forest at three distinct locations (transect from sea to land), and the samples were analyzed by quantitative PCR and internal transcribed spacer (ITS)-based PCR-DGGE analysis. The abundance of fungi was found to be higher in the oil-affected mangrove. Visual observation and correspondence analysis (CA) of the ITS-based PCR-DGGE profiles revealed differences in the fungal communities between the sampled areas. Remarkably, the oil-spilled area was quite distinct from the unaffected sampling areas. On the basis of the ITS sequences, fungi that are associated with the Basidiomycota and Ascomycota taxa were most common and belonged primarily to the genera Epicoccum, Nigrospora, and Cladosporium. Moreover, the Nigrospora fungal species were shown to be sensitive to oil, whereas a group that was described as "uncultured Basidiomycota" was found more frequently in oil-contaminated areas. Our results showed an increase in fungal abundance in the oil-polluted mangrove regions, and these data indicated potential fungal candidates for remediation of the oil-affected mangroves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work assessed the bioremediation of herbicide Velpar K (R), in vitro in aqueous solution, used against weeds in sugar cane in Sao Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K (R) in the gel. The analysis of high performance liquid chromatography ( HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K (R)/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K (R).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work assessed the bioremediation of herbicide Velpar K®, in vitro in aqueous solution, used against weeds in sugar cane in São Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K®in the gel. The analysis of high performance liquid chromatography (HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K®/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K®.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.