998 resultados para Contains Zooxanthellae
Resumo:
Cryo-electron microscopy of vitreous section makes it possible to observe cells and tissues at high resolution in a close-to-native state. The specimen remains hydrated; chemical fixation and staining are fully avoided. There is minimal molecular aggregation and the density observed in the image corresponds to the density in the object. Accordingly, organotypic hippocampal rat slices were vitrified under high pressure and controlled cryoprotection conditions, cryosectioned at a final thickness of approximately 70 nm and observed below -170 degrees C in a transmission electron microscope. The general aspect of the tissue compares with previous electron microscopy observations. The detailed analysis of the synapse reveals that the density of material in the synaptic cleft is high, even higher than in the cytoplasm, and that it is organized in 8.2-nm periodic transcleft complexes. Previously undescribed structures of presynaptic and postsynaptic elements are also described.
Resumo:
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64’s steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.
Resumo:
Histone mRNAs are naturally intronless and accumulate efficiently in the cytoplasm. To learn whether there are cis-acting sequences within histone genes that allow efficient cytoplasmic accumulation of RNAs, we made recombinant constructs in which sequences from the mouse H2a gene were cloned into a human β-globin cDNA. By using transient transfection and RNase protection analysis, we demonstrate here that a 100-bp sequence within the H2a coding region permits efficient cytoplasmic accumulation of the globin cDNA transcripts. We also show that this sequence appears to suppress splicing and can functionally replace Rev and the Rev-responsive element in the cytoplasmic accumulation of unspliced HIV-1-related mRNAs. Like the Rev-responsive element, this sequence acts in an orientation-dependent manner. We thus propose that the sequence identified here may be a member of the cis-acting elements that facilitate the cytoplasmic accumulation of naturally intronless gene transcripts.
Resumo:
DNA polymerase δ (pol δ) plays an essential role in DNA replication, repair, and recombination. We have purified pol δ from Schizosaccharomyces pombe more than 103-fold and demonstrated that the polymerase activity of purified S. pombe pol δ is completely dependent on proliferating cell nuclear antigen and replication factor C. SDS/PAGE analysis of the purified fraction indicated that the pol δ complex consists of five subunits that migrate with apparent molecular masses of 125, 55, 54, 42, and 22 kDa. Western blot analysis indicated that the 125, 55, and 54 kDa proteins are the large catalytic subunit (Pol3), Cdc1, and Cdc27, respectively. The identity of the other two subunits, p42 and p22, was determined following proteolytic digestion and sequence analysis of the resulting peptides. The peptide sequences derived from the p22 subunit indicated that this subunit is identical to Cdm1, previously identified as a multicopy suppressor of the temperature-sensitive cdc1-P13 mutant, whereas peptide sequences derived from the p42 subunit were identical to a previously uncharacterized ORF located on S. pombe chromosome 1.
Resumo:
Pathogenic α-synuclein (αS) gene mutations occur in rare familial Parkinson’s disease (PD) kindreds, and wild-type αS is a major component of Lewy bodies (LBs) in sporadic PD, dementia with LBs (DLB), and the LB variant of Alzheimer’s disease, but β-synuclein (βS) and γ-synuclein (γS) have not yet been implicated in neurological disorders. Here we show that in PD and DLB, but not normal brains, antibodies to αS and βS reveal novel presynaptic axon terminal pathology in the hippocampal dentate, hilar, and CA2/3 regions, whereas antibodies to γS detect previously unrecognized axonal spheroid-like lesions in the hippocampal dentate molecular layer. The aggregation of other synaptic proteins and synaptic vesicle-like structures in the αS- and βS-labeled hilar dystrophic neurites suggests that synaptic dysfunction may result from these lesions. Our findings broaden the concept of neurodegenerative “synucleinopathies” by implicating βS and γS, in addition to αS, in the onset/progression of PD and DLB.