870 resultados para Consumption Predicting Model
Resumo:
BACKGROUND: Workers with persistent disabilities after orthopaedic trauma may need occupational rehabilitation. Despite various risk profiles for non-return-to-work (non-RTW), there is no available predictive model. Moreover, injured workers may have various origins (immigrant workers), which may either affect their return to work or their eligibility for research purposes. The aim of this study was to develop and validate a predictive model that estimates the likelihood of non-RTW after occupational rehabilitation using predictors which do not rely on the worker's background. METHODS: Prospective cohort study (3177 participants, native (51%) and immigrant workers (49%)) with two samples: a) Development sample with patients from 2004 to 2007 with Full and Reduced Models, b) External validation of the Reduced Model with patients from 2008 to March 2010. We collected patients' data and biopsychosocial complexity with an observer rated interview (INTERMED). Non-RTW was assessed two years after discharge from the rehabilitation. Discrimination was assessed by the area under the receiver operating curve (AUC) and calibration was evaluated with a calibration plot. The model was reduced with random forests. RESULTS: At 2 years, the non-RTW status was known for 2462 patients (77.5% of the total sample). The prevalence of non-RTW was 50%. The full model (36 items) and the reduced model (19 items) had acceptable discrimination performance (AUC 0.75, 95% CI 0.72 to 0.78 and 0.74, 95% CI 0.71 to 0.76, respectively) and good calibration. For the validation model, the discrimination performance was acceptable (AUC 0.73; 95% CI 0.70 to 0.77) and calibration was also adequate. CONCLUSIONS: Non-RTW may be predicted with a simple model constructed with variables independent of the patient's education and language fluency. This model is useful for all kinds of trauma in order to adjust for case mix and it is applicable to vulnerable populations like immigrant workers.
Resumo:
The updated Vienna Prediction Model for estimating recurrence risk after an unprovoked venous thromboembolism (VTE) has been developed to identify individuals at low risk for VTE recurrence in whom anticoagulation (AC) therapy may be stopped after 3 months. We externally validated the accuracy of the model to predict recurrent VTE in a prospective multicenter cohort of 156 patients aged ≥65 years with acute symptomatic unprovoked VTE who had received 3 to 12 months of AC. Patients with a predicted 12-month risk within the lowest quartile based on the updated Vienna Prediction Model were classified as low risk. The risk of recurrent VTE did not differ between low- vs higher-risk patients at 12 months (13% vs 10%; P = .77) and 24 months (15% vs 17%; P = 1.0). The area under the receiver operating characteristic curve for predicting VTE recurrence was 0.39 (95% confidence interval [CI], 0.25-0.52) at 12 months and 0.43 (95% CI, 0.31-0.54) at 24 months. In conclusion, in elderly patients with unprovoked VTE who have stopped AC, the updated Vienna Prediction Model does not discriminate between patients who develop recurrent VTE and those who do not. This study was registered at www.clinicaltrials.gov as #NCT00973596.
Resumo:
The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.
Resumo:
BACKGROUND: Dyslipidemia is recognized as a major cause of coronary heart disease (CHD). Emerged evidence suggests that the combination of triglycerides (TG) and waist circumference can be used to predict the risk of CHD. However, considering the known limitations of TG, non-high-density lipoprotein (non-HDL = Total cholesterol - HDL cholesterol) cholesterol and waist circumference model may be a better predictor of CHD. PURPOSE: The Framingham Offspring Study data were used to determine if combined non-HDL cholesterol and waist circumference is equivalent to or better than TG and waist circumference (hypertriglyceridemic waist phenotype) in predicting risk of CHD. METHODS: A total of3,196 individuals from Framingham Offspring Study, aged ~ 40 years old, who fasted overnight for ~ 9 hours, and had no missing information on nonHDL cholesterol, TG levels, and waist circumference measurements, were included in the analysis. Receiver Operator Characteristic Curve (ROC) Area Under the Curve (AUC) was used to compare the predictive ability of non-HDL cholesterol and waist circumference and TG and waist circumference. Cox proportional-hazards models were used to examine the association between the joint distributions of non-HDL cholesterol, waist circumference, and non-fatal CHD; TG, waist circumference, and non-fatal CHD; and the joint distribution of non-HDL cholesterol and TG by waist circumference strata, after adjusting for age, gender, smoking, alcohol consumption, diabetes, and hypertension status. RESULTS: The ROC AUC associated with non-HDL cholesterol and waist circumference and TG and waist circumference are 0.6428 (CI: 0.6183, 0.6673) and 0.6299 (CI: 0.6049, 0.6548) respectively. The difference in the ROC AVC is 1.29%. The p-value testing if the difference in the ROC AVCs between the two models is zero is 0.10. There was a strong positive association between non-HDL cholesterol and the risk for non-fatal CHD within each TO levels than that for TO levels within each level of nonHDL cholesterol, especially in individuals with high waist circumference status. CONCLUSION: The results suggest that the model including non-HDL cholesterol and waist circumference may be superior at predicting CHD compared to the model including TO and waist circumference.
Resumo:
In this chapter, an asymmetric DSGE model is built in order to account for asymmetries in business cycles. One of the most important contributions of this work is the construction of a general utility function which nests loss aversion, risk aversion and habits formation by means of a smooth transition function. The main idea behind this asymmetric utility function is that under recession the agents over-smooth consumption and leisure choices in order to prevent a huge deviation of them from the reference level of the utility; while under boom, the agents simply smooth consumption and leisure, but trying to be as far as possible from the reference level of utility. The simulations of this model by means of Perturbations Method show that it is possible to reproduce asymmetrical business cycles where recession (on shock) are stronger than booms and booms are more long-lasting than recession. One additional and unexpected result is a downward stickiness displayed by real wages. As a consequence of this, there is a more persistent fall in employment in recession than in boom. Thus, the model reproduces not only asymmetrical business cycles but also real stickiness and hysteresis.
Resumo:
Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters average soil thermal conductivity, specific beat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981-August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R-2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R-2 -values of the testing period were between 0.87 and 0.94 at a depth of 20cm. and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means, that the model is suitable for addition to catchment scale models.
Resumo:
Results from the first Sun-to-Earth coupled numerical model developed at the Center for Integrated Space Weather Modeling are presented. The model simulates physical processes occurring in space spanning from the corona of the Sun to the Earth's ionosphere, and it represents the first step toward creating a physics-based numerical tool for predicting space weather conditions in the near-Earth environment. Two 6- to 7-d intervals, representing different heliospheric conditions in terms of the three-dimensional configuration of the heliospheric current sheet, are chosen for simulations. These conditions lead to drastically different responses of the simulated magnetosphere-ionosphere system, emphasizing, on the one hand, challenges one encounters in building such forecasting tools, and on the other hand, emphasizing successes that can already be achieved even at this initial stage of Sun-to-Earth modeling.
Resumo:
A model was published by Lewis et al. (2002) to predict the mean age at first egg (AFE) for pullets of laying strains reared under non-limiting environmental conditions and exposed to a single change in photoperiod during the rearing stage. Subsequently, Lewis et al. (2003) reported the effects of two opposing changes in photoperiod, which showed that the first change appears to alter the pullet's physiological age so that it responds to the second change as though it had been given at an earlier age (if photoperiod was decreased), or later age (if photoperiod was increased) than the true chronological age. During the construction of a computer model based on these two publications, it became apparent that some of the components of the models needed adjustment. The amendments relate to (1) the standard deviation (S.D.) used for calculating the proportion of a young flock that has attained photosensitivity, (2) the equation for calculating the slope of the line relating AFE to age at transfer from one photoperiod to another, (3) the equation used for estimating the distribution of AFE as a function of the mean value, (4) the point of no return when pullets which have started spontaneous maturation in response to the current photoperiod can no longer respond to a late change in photoperiod and (5) the equations used for calculating the distribution of AFE when the trait is bimodal.
Resumo:
The completion of the Single European Market was expected to create a large market that would enable firms to capture economies of scale that would in turn result in lower prices to European consumers. These benefits are only likely to be realised if consumers in the various countries of the EU wish to consume the same products and respond to similar marketing strategies (with respect to promotion, distribution etc). This study examines, through a model of yoghurt consumption, whether cultural differences continue to determine food-related behaviour in the EU. The model is derived from the marketing literature and views the consumption decision as the outcome of a multi-stage process in which yoghurt knowledge, attitudes to different yoghurt attributes (such as bio-bifidus, low-fat, organic) and overall attitude towards yoghurt as a product all feed into the frequency with which yoghurt is consumed at breakfast, as a snack and as a dessert. The model uses data collected from a consumer survey in I I European countries and is estimated using probit and ordinal probit methods. The results suggest that important cultural differences continue to determine food-related behaviour in the I I countries of the study. (c) 2004 Elsevier Ltd. All rights reserved.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the role of consumption-wealth ratio on predicting future stock returns through a panel approach. We follow the theoretical framework proposed by Lettau and Ludvigson (2001), in which a model derived from a nonlinear consumer’s budget constraint is used to settle the link between consumption-wealth ratio and stock returns. Using G7’s quarterly aggregate and financial data ranging from the first quarter of 1981 to the first quarter of 2014, we set an unbalanced panel that we use for both estimating the parameters of the cointegrating residual from the shared trend among consumption, asset wealth and labor income, cay, and performing in and out-of-sample forecasting regressions. Due to the panel structure, we propose different methodologies of estimating cay and making forecasts from the one applied by Lettau and Ludvigson (2001). The results indicate that cay is in fact a strong and robust predictor of future stock return at intermediate and long horizons, but presents a poor performance on predicting one or two-quarter-ahead stock returns.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.