972 resultados para Constant pressure test
Resumo:
Purpose: Recent studies showed that pericardial fat was independently correlated with the development of coronary artery disease (CAD). The mechanism remains unclear. We aimed at assessing a possible relationship between pericardial fat volume and endothelium-dependent coronary vasomotion, a surrogate of future cardiovascular events.Methods: Fifty healthy volunteers without known CAD or cardiovascular risk factors (CRF) were enrolled. They all underwent a dynamic Rb- 82 cardiac PET/CT to quantify myocardial blood flow (MBF) at rest, during MBF response to cold pressure test (CPT-MBF) and adenosine stress. Pericardial fat volume (PFV) was measured using a 3D volumetric CT method and common biological CRF (glucose and insulin levels, HOMA-IR, cholesterol, triglyceride, hs-CRP). Relationships between MBF response to CPT, PFV and other CRF were assessed using non-parametric Spearman correlation and multivariate regression analysis of variables with significant correlation on univariate analysis (Stata 11.0).Results: All of the 50 participants had normal MBF response to adenosine (2.7±0.6 mL/min/g; 95%CI: 2.6−2.9) and myocardial flow reserve (2.8±0.8; 95%CI: 2.6−3.0) excluding underlying CAD. Simple regression analysis revealed a significant correlation between absolute CPTMBF and triglyceride level (rho = −0.32, p = 0.024) fasting blood insulin (rho = −0.43, p = 0.0024), HOMA-IR (rho = −0.39, p = 0.007) and PFV (rho = −0.52, p = 0.0001). MBF response to adenosine was only correlated with PFV (rho = −0.32, p = 0.026). On multivariate regression analysis PFV emerged as the only significant predictor of MBF response to CPT (p = 0.002).Conclusion: PFV is significantly correlated with endothelium-dependent coronary vasomotion. High PF burden might negatively influence MBF response to CPT, as well as to adenosine stress, even in persons with normal hyperemic myocardial perfusion imaging, suggesting a link between PF and future cardiovascular events. While outside-to-inside adipokines secretion through the arterial wall has been described, our results might suggest an effect upon NO-dependent and -independent vasodilatation. Further studies are needed to elucidate this mechanism.
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
The aim of this study was to assess the effectiveness of glyphosate, as Rodeo(r) formulation, to control Eichhornia crassipes, Pistia stratiotes, Salvinia molesta, Salvinia herzogii and Urochloa subquadripara, under greenhouse conditions. The doses assessed were (480, 960, 1440, 1920, 2400, 2880, 3360 and 3840 g ha-1 of glyphosate) with 0.5% of the Aterbane(r) BR surfactant and a control, with no herbicide application. All experiments were conducted in a completely randomized experimental design with ten replications. Applications were carried out by precision backpack sprayer at a CO2 constant pressure of 25 psi and spray solution consumption of 200 L ha-1. Product effectiveness was determined by assessing the growth inhibitions and phytotoxicity signals during the periods of 3, 7, 15, 21, 30 and 45 days after application (DAA). At 45 DAA, the highest glyphosate dose (3840 g ha-1) displayed 100% effectiveness for all four macrophyte species. Under greenhouse conditions, the glyphosate in formulation Rodeo(r) with 0.5% of Aterbarne(r) BR surfactant showed excellent effectiveness, inhibiting the growth of the floating aquatic macrophytes. This procedure can be included on the tillage plans for these species.
Resumo:
We determined the effect of acute extracellular fluid volume changes on saline flow through 4 gut segments (ileocolonic, ileal, ileocolonic sphincter and proximal colon), perfused at constant pressure in anesthetized dogs. Two different experimental protocols were used: hypervolemia (iv saline infusion, 0.9% NaCl, 20 ml/min, volume up to 5% body weight) and controlled hemorrhage (up to a 50% drop in mean arterial pressure). Mean ileocolonic flow (N = 6) was gradually and significantly decreased during the expansion (17.1%, P<0.05) and expanded (44.9%, P<0.05) periods while mean ileal flow (N = 7) was significantly decreased only during the expanded period (38%, P<0.05). Mean colonic flow (N = 7) was decreased during expansion (12%, P<0.05) but returned to control levels during the expanded period. Mean ileocolonic sphincter flow (N = 6) was not significantly modified. Mean ileocolonic flow (N = 10) was also decreased after hemorrhage (retracted period) by 17% (P<0.05), but saline flow was not modified in the other separate circuits (N = 6, 5 and 4 for ileal, ileocolonic sphincter and colonic groups, respectively). The expansion effect was blocked by atropine (0.5 mg/kg, iv) both on the ileocolonic (N = 6) and ileal (N = 5) circuits. Acute extracellular fluid volume retraction and expansion increased the lower gastrointestinal resistances to saline flow. These effects, which could physiologically decrease the liquid volume being supplied to the colon, are possible mechanisms activated to acutely balance liquid volume deficit and excess.
Resumo:
We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective µ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 µg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 µg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 µg/paw) and tolbutamide (80, 160 and 240 µg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 µg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 µg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 µg/paw), or the non-specific K+ channel blocker TEA (150 µg/paw), 4-AP (50 µg/paw), and cesium (250 µg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral µ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.
Resumo:
Today’s healthcare organizations are under constant pressure for change, as hospitals should be able to offer their patients the best possible medical care with limited resources and, at the same time, to retain steady efficiency level in their operation. This is challenging, especially in trauma hospitals, in which the variation in the patient cases and volumes is relatively high. Furthermore, the trauma patient's care requires plenty of resources as most the patients have to be treated as single cases. Occasionally, the sudden increases in demand causes congestion in the operations of the hospital, which in Töölö hospital appears as an increase in the surgery waiting times within the yellow urgency class patients. An increase in the surgery waiting times may cause the diminution of the patient's condition, which also raises the surgery risks. The congestion itself causes overloading of the hospital capacity and staff. The aim of this master’s thesis is to introduce the factors contributing to the trauma process, and to examine the correlation between the different variables and the lengthened surgery waiting times. The results of this study are based on a three-year patient data and different quantitative analysis. Based on the analysis, a daily usable indicator was created in order to support the decision making in the operations management. By using the selected indicator, the effects of congestion can be acknowledged and the corrective action can also be taken more proactively.
Resumo:
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 μg/paw) in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 μg/paw) and AM-630 (100 μg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g), 20 μg diclofenac (mean = 4.825 ± 3.850 g) and 40 μg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and indomethacin.
Resumo:
Tämän diplomityön tarkoituksena on tutkia ensin jauhatusparametrien vaikutus rikastushiekan hienousasteeseen eli miten partikkelikokojakaumaa kuvaavat partikkelikoot muuttuvat. Tämän jälkeen tutkitaan miten rikastushiekan hienousasteen muuttuminen vaikuttaa jauhettujen rikastushiekkalietenäytteiden suodattuvuuteen. Partikkelikokojakauman variaatioista yritetään löytää yhteys suodinkakun ominaisvastuksen ja huokoisuuden välillä. Jauhatus suoritettiin laboratoriomittakaavan helmimyllyllä märkäjauhatuksena. Jauhatusta varten tehtiin kolmitasoinen faktorikoesuunnitelma, jossa muuttujina ovat lasihelmien halkaisija, jauhatusaika ja sekoitinelimen pyörimisnopeus. Suodatus toteutettiin vakiopainesuodatuksena kolmella eri suodatuspaineella Nutsche-suodattimella. Työn tuloksista saatiin selville, että partikkelikokojakauman leveys korreloi suodinkakun ominaisvastuksen kanssa. Kun partikkelikokojakauma leveys muuttui kapeammaksi, saatiin kakun ominaisvastus pienemmäksi ja suodatukseen kulunut aika lyheni. Kapein partikkelikokojakauman leveys saatiin suurimmalla helmen halkaisijalla, pisimmällä jauhatusajalla sekä suurimmalla sekoitusnopeudella.
Resumo:
By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
La présente étude visait à développer un protocole de fixation et d'échantillonnage pour le poumon équin suivant les directives publiées sur l’utilisation d’une approche stéréologique de type « design-based ». Les poumons gauches de chevaux contrôles et atteints du souffle ont été fixés avec du formaldéhyde 10% pendant 48h à une pression constante de 25-30 cm d’H2O. Les poumons ont été sectionnés en 20-21 tranches d’une épaisseur d'environ 2,5 cm chacune; de 10-11 tranches ont été sélectionnées de façon aléatoire et systématique pour la mesure du volume de référence avec la méthode de Cavalieri. Un protocole d’échantillonnage systématique, aléatoire et uniforme utilisant le principe du « smooth fractionator » et un poinçon à biopsie de 17 mm ont été utilisés pour échantillonner une fraction représentative de chaque poumon. Les méthodes d’échantillonnage de sections verticales, uniformes et aléatoires (VUR) et d’échantillonnage isotropique, uniforme et aléatoire (IUR) ont toutes deux été effectuées pour comparer le nombre de voies respiratoires en coupe perpendiculaire obtenues à partir de chaque méthode. L'architecture globale et la qualité des tissus fixés ont également été évaluées. Des spécimens pulmonaires équins ont été échantillonnés avec succès selon un protocole visant à produire des données morphométriques valides. Les tissus ont été fixés avec un minimum d'artéfacts et contenaient une quantité suffisante de voies respiratoires en coupe perpendiculaire dans les deux types d’échantillons. En conclusion, un protocole de fixation et d'échantillonnage adapté au poumon équin permettant l'utilisation d'une approche stéréologique de type « design-based » a été élaboré pour l’étude du remodelage des voies respiratoires.
Resumo:
The structure of turbulent flow over large roughness consisting of regular arrays of cubical obstacles is investigated numerically under constant pressure gradient conditions. Results are analysed in terms of first- and second-order statistics, by visualization of instantaneous flow fields and by conditional averaging. The accuracy of the simulations is established by detailed comparisons of first- and second-order statistics with wind-tunnel measurements. Coherent structures in the log region are investigated. Structure angles are computed from two-point correlations, and quadrant analysis is performed to determine the relative importance of Q2 and Q4 events (ejections and sweeps) as a function of height above the roughness. Flow visualization shows the existence of low-momentum regions (LMRs) as well as vortical structures throughout the log layer. Filtering techniques are used to reveal instantaneous examples of the association of the vortices with the LMRs, and linear stochastic estimation and conditional averaging are employed to deduce their statistical properties. The conditional averaging results reveal the presence of LMRs and regions of Q2 and Q4 events that appear to be associated with hairpin-like vortices, but a quantitative correspondence between the sizes of the vortices and those of the LMRs is difficult to establish; a simple estimate of the ratio of the vortex width to the LMR width gives a value that is several times larger than the corresponding ratio over smooth walls. The shape and inclination of the vortices and their spatial organization are compared to recent findings over smooth walls. Characteristic length scales are shown to scale linearly with height in the log region. Whilst there are striking qualitative similarities with smooth walls, there are also important differences in detail regarding: (i) structure angles and sizes and their dependence on distance from the rough surface; (ii) the flow structure close to the roughness; (iii) the roles of inflows into and outflows from cavities within the roughness; (iv) larger vortices on the rough wall compared to the smooth wall; (v) the effect of the different generation mechanism at the wall in setting the scales of structures.
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.