967 resultados para Connecticut Institute of Water Resources
Resumo:
The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.
Resumo:
This study aims at assessing the socio-economic and environmental effects of different societal and human development scenarios and climate change in the water-scarce southern and eastern Mediterranean. The study develops a two-stage modelling methodology that includes an econometric analysis for the southern and eastern Mediterranean region as a whole and a detailed, integrated socioecological assessment focusing on Jordan, Syria and Morocco. The results show that water resources will be under increasing stress in future years. In spite of country differences, a future path of sustainable development is possible in the region. Water withdrawals could decrease, preserving renewable water resources and reversing the negative effects on agricultural production and rural society. This, however, requires a combination across the region of technical, managerial, economic, social and institutional changes that together foster a substantive structural change. A balanced implementation of water supply-enhancing and demand-management measures along with improved governance are key to attaining a cost-effective sustainable future in which economic growth, a population increase and trade expansion are compatible with the conservation of water resources.
Resumo:
Study was made with the cooperation of U.S. Soil Conservation Service and North Carolina Dept. of Water Resources.
Resumo:
"Based on the SERIES 'E' projected national population, Bureau of the Census, 1972."
Resumo:
A brief abstract of the study on water resources administration made by the Syracuse University Research Group, giving the basic recommendations of the study and the reasoning behind them.
Resumo:
Bibliography: p. 27-28.
Resumo:
Techniques are developed for the visual interpretation of drainage features from satellite imagery. The process of interpretation is formalised by the introduction of objective criteria. Problems of assessing the accuracy of maps are recognized, and a method is developed for quantifying the correctness of an interpretation, in which the more important features are given an appropriate weight. A study was made of imagery from a variety of landscapes in Britain and overseas, from which maps of drainage networks were drawn. The accuracy of the mapping was assessed in absolute terms, and also in relation to the geomorphic parameters used in hydrologic models. Results are presented relating the accuracy of interpretation to image quality, subjectivity and the effects of topography. It is concluded that the visual interpretation of satellite imagery gives maps of sufficient accuracy for the preliminary assessment of water resources, and for the estimation of geomorphic parameters. An examination is made of the use of remotely sensed data in hydrologic models. It is proposed that the spectral properties of a scene are holistic, and are therefore more efficient than conventional catchment characteristics. Key hydrologic parameters were identified, and were estimated from streamflow records. The correlation between hydrologic variables and spectral characteristics was examined, and regression models for streamflow were developed, based solely on spectral data. Regression models were also developed using conventional catchment characteristics, whose values were estimated using satellite imagery. It was concluded that models based primarily on variables derived from remotely sensed data give results which are as good as, or better than, models using conventional map data. The holistic properties of remotely sensed data are realised only in undeveloped areas. In developed areas an assessment of current land-use is a more useful indication of hydrologic response.
Resumo:
The legal arrangements for the management of water resources are currently a complex matrix of rules of various kinds. These rules perform a diverse range of functions. Some are part of what may be described as the macro-legal system for the governance of water resources. This includes paralegal rules in the form of statements of value, objective, outcome or principles . Others are part of the micro-legal system for the governance of water resources. This includes traditional legal rules in the form of statements of standards in relation to individual conduct, behaviour or decision making. These legal arrangements may be international, regional, national or local. Accordingly some apply to nation states within the international community. Others apply to the regulatory agencies making decisions about water resources within nation states. Ultimately most of these legal arrangements apply to those who use and develop water resources for particular purposes and in particular locations. In accordance with this framework, rules explain how water resources should be used in particular circumstances and how decisions should be made to ensure the effective planning and regulation of water resources.
Resumo:
It is a well-known fact that most of the developing countries have intermittent water supply and the quantity of water supplied from the source is also not distributed equitably among the consumers. Aged pipelines, pump failures, and improper management of water resources are some of the main reasons for it. This study presents the application of a nonlinear control technique to overcome this problem in different zones in the city of Bangalore. The water is pumped to the city from a large distance of approximately 100km over a very high elevation of approximately 400m. The city has large undulating terrain among different zones, which leads to unequal distribution of water. The Bangalore, inflow water-distribution system (WDS) has been modeled. A dynamic inversion (DI) nonlinear controller with proportional integral derivative (PID) features (DI-PID) is used for valve throttling to achieve the target flows to different zones of the city. This novel approach of equitable water distribution using DI-PID controllers that can be used as a decision support system is discussed in this paper.
Resumo:
Abstract The rapid growth of both formal and informal high density urban settlements around major water resources has led to increased pollution of streams, rivers, lakes and estuaries, due to contaminated runoff from these developments. The paper identified major contaminants to be : organic waste (sewage), industrial effluent, pesticides and litter. Pollutant loads vary depending on the hydrology of the urban area, local topography and soil conditions. In some instances, severe pollution of neighbouring and downstream water courses has been observed. The management of catchment land uses, riparian zones, in stream habitat, as well as in stream water flow patterns and quality are necessary in order to sustain the integrity and "health" of water resources, for fisheries and other developments. As such, attempts to ensure a certain level of water quality without attention to other aspects will not automatically ensure a "healthy" ecosystem even as fish habitat. Proper management leads to better water quality and conducive environment for increased fish production
Resumo:
Since the 1990s, international water sector reforms have centred heavily on economic and market approaches. In regard to water resources management, tradable water rights have been promoted, often supported by the neoliberal model adopted in Chile. Chile's 1981 Water Code was reformed to comprise a system of water rights that could be freely traded with few restrictions. International financial institutions have embraced the Chilean model, claiming that it results in more efficient water use, and potentially fosters social and environmental benefits. However, in Chile the Water Code is deeply contested. It has been criticised for being too permissive and has produced a number of problems in practice. Moreover, attempts to modify it have become the focus of a lengthy polemic debate. This paper employs a political ecology perspective to explore the socio-environmental outcomes of water management in Chile, drawing on a case study of agriculture in the semi-arid Norte Chico. The case illustrates how large-scale farmers exert greater control over water, while peasant farmers have increasingly less access. I argue that these outcomes are facilitated by the mode of water management implemented within the framework of the Water Code. Through this preliminary examination of social equity and the environmental aspects of water resources management in Chile, I suggest that the omission of these issues from the international debates on water rights markets is a cause for concern.
Resumo:
Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.
Resumo:
The effects of climate change are expected to be very severe in arid regions. The Sonora River Basin, in the northwestern state of Sonora, Mexico, is likely to be severely affected. Some of the anticipated effects include precipitation variability, intense storm events, higher overall temperatures, and less available water. In addition, population in Sonora, specifically the capital city of Hermosillo, is increasing at a 1.5% rate and current populations are near 700,000. With the reduction in water availability and an increase in population, Sonora, Mexico is expected to experience severe water resource issues in the near future. In anticipation of these changes, research is being conducted in an attempt to improve water management in the Sonora River Basin, located in the northwestern part of Sonora. This research involves participatory modeling techniques designed to increase water manager awareness of hydrological models and their use as integrative tools for water resource management. This study was conducted as preliminary research for the participatory modeling grant in order to gather useful information on the population being studied. This thesis presents research from thirty-four in-depth interviews with water managers, citizens, and agricultural producers in Sonora, Mexico. Data was collected on perceptions of water quantity and quality in the basin, thoughts on current water management practices, perceptions of climate change and its management, experience with, knowledge of, and trust in hydrological models as water management tools. Results showed that the majority of interviewees thought there was not enough water to satisfy their daily needs. Most respondents also agreed that the water available was of good quality, but that current management of water resources was ineffective. Nearly all interviewees were aware of climate change and thought it to be anthropogenic. May reported experiencing higher temperatures, precipitation changes, and higher water scarcity and attributed those fluctuations to climate change. 65% of interviewees were at least somewhat familiar with hydrological models, though only 28% had ever used them or their output. Even with model usage results being low, 100% of respondents believed hydrological models to be very useful water management tools. Understanding how water, climate change, and hydrological models are perceived by this population of people is essential to improving their water management practices in the face of climate change.
Resumo:
Growing scarcity, increasing demand and bad management of water resources are causing weighty competition for water and consequently managers are facing more and more pressure in an attempt to satisfy users? requirement. In many regions agriculture is one of the most important users at river basin scale since it concentrates high volumes of water consumption during relatively short periods (irrigation season), with a significant economic, social and environmental impact. The interdisciplinary characteristics of related water resources problems require, as established in the Water Framework Directive 2000/60/EC, an integrated and participative approach to water management and assigns an essential role to economic analysis as a decision support tool. For this reason, a methodology is developed to analyse the economic and environmental implications of water resource management under different scenarios, with a focus on the agricultural sector. This research integrates both economic and hydrologic components in modelling, defining scenarios of water resource management with the goal of preventing critical situations, such as droughts. The model follows the Positive Mathematical Programming (PMP) approach, an innovative methodology successfully used for agricultural policy analysis in the last decade and also applied in several analyses regarding water use in agriculture. This approach has, among others, the very important capability of perfectly calibrating the baseline scenario using a very limited database. However one important disadvantage is its limited capacity to simulate activities non-observed during the reference period but which could be adopted if the scenario changed. To overcome this problem the classical methodology is extended in order to simulate a more realistic farmers? response to new agricultural policies or modified water availability. In this way an economic model has been developed to reproduce the farmers? behaviour within two irrigation districts in the Tiber High Valley. This economic model is then integrated with SIMBAT, an hydrologic model developed for the Tiber basin which allows to simulate the balance between the water volumes available at the Montedoglio dam and the water volumes required by the various irrigation users.
Resumo:
Three folded maps in pocket.