994 resultados para Confidence distribution
Resumo:
Reconstructing terrestrial water budgets is of prime importance for understanding past climate and environment. To shed more light on how plant-wax derived n-alkanes may be used for this purpose we investigated the distribution and stable isotopic compositions of hydrogen (dD) and carbon (d13C) of plant-wax derived n-C29 and -C31 alkanes in terrestrial, coastal and offshore surface sediments in relation to hydrology along a NW-SE transect east of the Italian Apennines from the Po River to the Eastern Gulf of Taranto. The plant wax average chain length increases southward and may relate to increasing temperature and/or aridity. The plant wax dD of the terrestrial and coastal samples also increases southward and mainly reflects changes in the dD of precipitation. The d13C of plant waxes is primarily interpreted in terms of C3 vegetation changes rather than varying contributions by C4 plants. The plant wax d13C-dD composition of the Po River and Apennine rivers differs considerably from that in southern Italy, and suggests a mainly southern source for plant waxes in marine sediments of the Gulf of Taranto. This calibration provides a basis for the reconstruction of past changes in the Italian water balance and n-alkane source areas.
Resumo:
Dinoflagellate cysts are useful for reconstructing upper water conditions. For adequate reconstructions detailed information is required about the relationship between modern day environmental conditions and the geographic distribution of cysts in sediments. This Atlas summarises the modern global distribution of 71 organicwalled dinoflagellate cyst species. The synthesis is based on the integration of literature sources together with data of 2405 globally distributed surface sediment samples that have been preparedwith a comparable methodology and taxonomy. The distribution patterns of individual cyst species are being comparedwith environmental factors that are knownto influence dinoflagellate growth, gamete production, encystment, excystment and preservation of their organic-walled cysts: surface water temperature, salinity, nitrate, phosphate, chlorophyll-a concentrations and bottom water oxygen concentrations. Graphs are provided for every species depicting the relationship between seasonal and annual variations of these parameters and the relative abundance of the species. Results have been compared with previously published records; an overview of the ecological significance as well as information about the seasonal production of each individual species is presented. The relationship between the cyst distribution and variation in the aforementioned environmental parameters was analysed by performing a canonical correspondence analysis. All tested variables showed a positive relationship on the 99% confidence level. Sea-surface temperature represents the parameter corresponding to the largest amount of variance within the dataset (40%) followed by nitrate, salinity, phosphate and bottom-water oxygen concentration, which correspond to 34%, 33%, 25% and 24% of the variance, respectively. Characterisations of selected environments as well as a discussion about how these factors could have influenced the final cyst yield in sediments are included.
Resumo:
This study evaluates two methods for estimating a soilís hydraulic conductivity: in-situ infiltration tests and grain-size analyses. There are numerous formulas in the literature that relate hydraulic conductivity to various parameters of the infiltrating medium, but studies have shown that these formulas do not perform well when applied to depositional environments that differ from those used to derive the formulas. Thus, there exists a need to specialize infiltration tests and related grain-size analyses for the Vashon advance outwash in the Puget Lowland. I evaluated 134 infiltration tests and 119 soil samples to find a correlation between grain-size parameters and hydraulic conductivity. This work shows that a constant-head borehole infiltration test that accounts for capillarity with alpha approximately 5m^-1 is an effective method for calculating hydraulic conductivity from our flow tests. Then, by conducting grain-size analysis and applying a multiple linear regression, I show that the hydraulic conductivity can also be estimated by log(K) = 1.906 + 0.102D_10 + 0.039D_60 - 0.034D_90 - 7.952F_fines. This result predicts the infiltration rate with a 95% confidence interval of 20 ft/day. The results of study are for application in the Puget Lowland.
Resumo:
The generalized secant hyperbolic distribution (GSHD) proposed in Vaughan (2002) includes a wide range of unimodal symmetric distributions, with the Cauchy and uniform distributions being the limiting cases, and the logistic and hyperbolic secant distributions being special cases. The current article derives an asymptotically efficient rank estimator of the location parameter of the GSHD and suggests the corresponding one- and two-sample optimal rank tests. The rank estimator derived is compared to the modified MLE of location proposed in Vaughan (2002). By combining these two estimators, a computationally attractive method for constructing an exact confidence interval of the location parameter is developed. The statistical procedures introduced in the current article are illustrated by examples.
Resumo:
This paper reports potential benefits around dynamic thermal rating prediction of primary transformers within Western Power Distribution (WPD) managed Project FALCON (Flexible Approaches to Low Carbon Optimised Networks). Details of the thermal modelling, parameter optimisation and results validation are presented with asset and environmental data (measured and day/week-ahead forecast) which are used for determining dynamic ampacity. Detailed analysis of ratings and benefits and confidence in ability to accurately predict dynamic ratings are presented. Investigating the effect of sustained ONAN rating compared to a dynamic rating shows that there is scope to increase sustained ratings under ONAN operating conditions by up to 10% higher between December and March with a high degree of confidence. However, under high ambient temperature conditions this dynamic rating may also reduce in the summer months.
Resumo:
The three-parameter lognormal distribution is the extension of the two-parameter lognormal distribution to meet the need of the biological, sociological, and other fields. Numerous research papers have been published for the parameter estimation problems for the lognormal distributions. The inclusion of the location parameter brings in some technical difficulties for the parameter estimation problems, especially for the interval estimation. This paper proposes a method for constructing exact confidence intervals and exact upper confidence limits for the location parameter of the three-parameter lognormal distribution. The point estimation problem is discussed as well. The performance of the point estimator is compared with the maximum likelihood estimator, which is widely used in practice. Simulation result shows that the proposed method is less biased in estimating the location parameter. The large sample size case is discussed in the paper.
Resumo:
Nurses' knowledge regarding advance directives may affect their administration and completion in end-of-life care. Confidence among nurses is a barrier to the provision of quality end-of-life care. This study investigated nurses' knowledge of advance directives and perceived confidence in end-of-life care, in Hong Kong, Ireland, Israel, Italy and the USA using a cross-sectional descriptive design (n = 1089). In all countries, older nurses and those who had more professional experience felt more confident managing patients' symptoms at end-of-life and more comfortable stopping preventive medications at end-of-life. Nurses in the USA reported that they have more knowledge and experience of advance directives compared with other countries. In addition, they reported the highest levels of confidence and comfort in dealing with end-of-life care. Although legislation for advance directives does not yet exist in Ireland, nurses reported high levels of confidence in end-of-life care.
Resumo:
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N-20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is "mirrored" by deep-sea benthic processes.
Resumo:
This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram-Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1% and 5% confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners.
Resumo:
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
Resumo:
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
Resumo:
Let (X, Y) be bivariate normal random vectors which represent the responses as a result of Treatment 1 and Treatment 2. The statistical inference about the bivariate normal distribution parameters involving missing data with both treatment samples is considered. Assuming the correlation coefficient ρ of the bivariate population is known, the MLE of population means and variance (ξ, η, and σ2) are obtained. Inferences about these parameters are presented. Procedures of constructing confidence interval for the difference of population means ξ – η and testing hypothesis about ξ – η are established. The performances of the new estimators and testing procedure are compared numerically with the method proposed in Looney and Jones (2003) on the basis of extensive Monte Carlo simulation. Simulation studies indicate that the testing power of the method proposed in this thesis study is higher.