994 resultados para Concrete bridges.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"August 17, 1999."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Issued September 1934."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980’s. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) - Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An increase in the demand for the freight shipping in the United States has been predicted for the near future and Longer Combination Vehicles (LCVs), which can carry more loads in each trip, seem like a good solution for the problem. Currently, utilizing LCVs is not permitted in most states of the US and little research has been conducted on the effects of these heavy vehicles on the roads and bridges. In this research, efforts are made to study these effects by comparing the dynamic and fatigue effects of LCVs with more common trucks. Ten Steel and prestressed concrete bridges with span lengths ranging from 30’ to 140’ are designed and modeled using the grid system in MATLAB. Additionally, three more real bridges including two single span simply supported steel bridges and a three span continuous steel bridge are modeled using the same MATLAB code. The equations of motion of three LCVs as well as eight other trucks are derived and these vehicles are subjected to different road surface conditions and bumps on the roads and the designed and real bridges. By forming the bridge equations of motion using the mass, stiffness and damping matrices and considering the interaction between the truck and the bridge, the differential equations are solved using the ODE solver in MATLAB and the results of the forces in tires as well as the deflections and moments in the bridge members are obtained. The results of this study show that for most of the bridges, LCVs result in the smallest values of Dynamic Amplification Factor (DAF) whereas the Single Unit Trucks cause the highest values of DAF when traveling on the bridges. Also in most cases, the values of DAF are observed to be smaller than the 33% threshold suggested by the design code. Additionally, fatigue analysis of the bridges in this study confirms that by replacing the current truck traffic with higher capacity LCVs, in most cases, the remaining fatigue life of the bridge is only slightly decreased which means that taking advantage of these larger vehicles can be a viable option for decision makers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As an alternative to transverse spiral or hoop steel reinforcement, fiber reinforced polymers (FRPs) were introduced to the construction industry in the 1980's. The concept of concrete-filled FRP tube (CFFT) has raised great interest amongst researchers in the last decade. FRP tube can act as a pour form, protective jacket, and shear and flexural reinforcement for concrete. However, seismic performance of CFFT bridge substructure has not yet been fully investigated. Experimental work in this study included four two-column bent tests, several component tests and coupon tests. Four 1/6-scale bridge pier frames, consisting of a control reinforced concrete frame (RCF), glass FRP-concrete frame (GFF), carbon FRP-concrete frame (CFF), and hybrid glass/carbon FRP-concrete frame (HFF) were tested under reverse cyclic lateral loading with constant axial loads. Specimen GFF did not show any sign of cracking at a drift ratio as high as 15% with considerable loading capacity, whereas Specimen CFF showed that lowest ductility with similar load capacity as in Specimen GFF. FRP-concrete columns and pier cap beams were then cut from the pier frame specimens, and were tested again in three point flexure under monotonic loading with no axial load. The tests indicated that bonding between FRP and concrete and yielding of steel both affect the flexural strength and ductility of the components. The coupon tests were carried out to establish the tensile strength and elastic modulus of each FRP tube and the FRP mold for the pier cap beam in the two principle directions of loading. A nonlinear analytical model was developed to predict the load-deflection responses of the pier frames. The model was validated against test results. Subsequently, a parametric study was conducted with variables such as frame height to span ratio, steel reinforcement ratio, FRP tube thickness, axial force, and compressive strength of concrete. A typical bridge was also simulated under three different ground acceleration records and damping ratios. Based on the analytical damage index, the RCF bridge was most severely damaged, whereas the GFF bridge only suffered minor repairable damages. Damping ratio was shown to have a pronounced effect on FRP-concrete bridges, just the same as in conventional bridges. This research was part of a multi-university project, which is founded by the National Science Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As pontes rodoviárias de concreto armado estão sujeitas às ações dinâmicas variáveis devido ao tráfego de veículos sobre o tabuleiro. Estas ações dinâmicas podem gerar o surgimento das fraturas ou mesmo a sua propagação na estrutura. A correta consideração destes aspectos objetivou o desenvolvimento de um estudo, de forma a avaliar os esforços do tráfego de veículos pesados sobre o tabuleiro. As técnicas para a contagem de ciclos de esforços e a aplicação das regras de dano acumulado foram analisadas através das curvas S-N de diversas normas estudadas. A ponte rodoviária investigada é constituída por quatro vigas longitudinais, três transversinas e por um tabuleiro de concreto armado. O modelo computacional, desenvolvido para a análise dinâmica da ponte, foi concebido com base no emprego de técnicas usuais de discretização através do método dos elementos finitos. O modelo estrutural da obra de arte rodoviária estudada foi simulado com base no emprego de elementos finitos sólidos tridimensionais. Os veículos são representados a partir de sistemas massa-mola-amortecedor. O tráfego dessas viaturas é considerado mediante a simulação de comboios semi-infinitos, deslocando-se com velocidade constante sobre o tabuleiro da ponte. As conclusões deste trabalho versam acerca da vida útil de serviço dos elementos estruturais de pontes rodoviárias de concreto armado submetidas às ações dinâmicas provenientes do tráfego de veículos pesados sobre o tabuleiro.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considerando-se os diversos carregamentos que solicitam a estrutura de uma ponte rodoviária, ao longo de sua vida útil, alguns possuem um comportamento essencialmente dinâmico, ou seja, variam com o tempo, diferentemente do que é considerado na prática corrente de projeto desse tipo de obra de arte. Em geral, os projetistas desse tipo de estrutura têm tratado carregamentos como o de vento, tráfego de veículos e de pedestres como ações de natureza estática, ignorando seu perfil cíclico. Tal consideração, em diversas situações de projeto, tende a minorar os efeitos das ações dinâmicas sobre o sistema estrutural. Além disso, estruturas submetidas a solicitações cíclicas, sob uma carga inferior à caga máxima suportada pelo material, estão sujeitas ao fenômeno da fadiga. A consideração adequada de todos estes aspectos mostra-se fundamentalmente importante para correta avaliação dos níveis de esforços solicitantes do sistema estrutural e, bem como, para a identificação de fenômenos importantes como o da fadiga que pode vir a provocar, por exemplo, a ruptura de componentes estruturais sem aviso prévio ou motivo aparente. Para tal, nesta dissertação as técnicas para a contagem de ciclos de tensão e a aplicação das regras de dano acumulado foram analisadas através de curvas do tipo S-N, associadas a diversas normas de projeto. A ponte rodoviária mista (aço-concreto) investigada neste estudo é constituída por seis vigas de aço longitudinais com enrijecedores transversais, oito transversinas e por um tabuleiro de concreto armado. O modelo numérico-computacional, desenvolvido para a análise dinâmica da ponte, foi elaborado com base em técnicas usuais de discretização através do método dos elementos finitos. As mesas e almas das vigas, assim como os enrijecedores , foram modelados por elementos de casca e laje de concreto armado, por elementos sólidos. O carregamento dinâmico avaliado no presente estudo diz respeito ao tráfego de veículos, cuja representação se dá a partir de sistemas "massa-mola-amortecedor". Os comboios formados são adotados como sendo semi-infinitos, deslocando-se com velocidade constante sobre a ponte. As conclusões da presente investigação versam acerca da vida útil de serviço dos elementos estruturais de pontes mistas (aço-concreto).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper details the monitoring and repair of an impact damaged prestressed concrete bridge. The repair was required following an impact from a low-loader carrying an excavator while passing underneath the bridge. The repair was carried out by preloading the bridge in the vicinity of the damage to relieve some prestressing. This preload was removed following the hardening and considerable strength gain of the repair material. The true behaviour of damaged prestressed concrete bridges during repair is difficult to estimate theoretically due to lack of benchmarking and inadequacy of assumed damage models. A network of strain gauges at locations of interest was thus installed during the entire period of repair. Effects of various activities were qualitatively and quantitatively observed. The interaction and rapid, model-free calibration of damaged and undamaged beams, including identification of damaged gauges were also probed. This full scale experiment is expected to be of interest and benefit to the practising engineer and the researcher alike.