961 resultados para Conceptual-semantic relations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Answer Validation Exercise (AVE) is a pilot track within the Cross-Language Evaluation Forum (CLEF) 2006. The AVE competition provides an evaluation frame- work for answer validations in Question Answering (QA). In our participation in AVE, we propose a system that has been initially used for other task as Recognising Textual Entailment (RTE). The aim of our participation is to evaluate the improvement our system brings to QA. Moreover, due to the fact that these two task (AVE and RTE) have the same main idea, which is to find semantic implications between two fragments of text, our system has been able to be directly applied to the AVE competition. Our system is based on the representation of the texts by means of logic forms and the computation of semantic comparison between them. This comparison is carried out using two different approaches. The first one managed by a deeper study of the Word- Net relations, and the second uses the measure defined by Lin in order to compute the semantic similarity between the logic form predicates. Moreover, we have also designed a voting strategy between our system and the MLEnt system, also presented by the University of Alicante, with the aim of obtaining a joint execution of the two systems developed at the University of Alicante. Although the results obtained have not been very high, we consider that they are quite promising and this supports the fact that there is still a lot of work on researching in any kind of textual entailment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. ^ This thesis describes a heterogeneous database system being developed at High-performance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii) a framework for intelligent computing and communication on the Internet applying the concepts of our work. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Today, databases have become an integral part of information systems. In the past two decades, we have seen different database systems being developed independently and used in different applications domains. Today's interconnected networks and advanced applications, such as data warehousing, data mining & knowledge discovery and intelligent data access to information on the Web, have created a need for integrated access to such heterogeneous, autonomous, distributed database systems. Heterogeneous/multidatabase research has focused on this issue resulting in many different approaches. However, a single, generally accepted methodology in academia or industry has not emerged providing ubiquitous intelligent data access from heterogeneous, autonomous, distributed information sources. This thesis describes a heterogeneous database system being developed at Highperformance Database Research Center (HPDRC). A major impediment to ubiquitous deployment of multidatabase technology is the difficulty in resolving semantic heterogeneity. That is, identifying related information sources for integration and querying purposes. Our approach considers the semantics of the meta-data constructs in resolving this issue. The major contributions of the thesis work include: (i.) providing a scalable, easy-to-implement architecture for developing a heterogeneous multidatabase system, utilizing Semantic Binary Object-oriented Data Model (Sem-ODM) and Semantic SQL query language to capture the semantics of the data sources being integrated and to provide an easy-to-use query facility; (ii.) a methodology for semantic heterogeneity resolution by investigating into the extents of the meta-data constructs of component schemas. This methodology is shown to be correct, complete and unambiguous; (iii.) a semi-automated technique for identifying semantic relations, which is the basis of semantic knowledge for integration and querying, using shared ontologies for context-mediation; (iv.) resolutions for schematic conflicts and a language for defining global views from a set of component Sem-ODM schemas; (v.) design of a knowledge base for storing and manipulating meta-data and knowledge acquired during the integration process. This knowledge base acts as the interface between integration and query processing modules; (vi.) techniques for Semantic SQL query processing and optimization based on semantic knowledge in a heterogeneous database environment; and (vii.) a framework for intelligent computing and communication on the Internet applying the concepts of our work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Studies of semantic context effects in spoken word production have typically distinguished between categorical (or taxonomic) and associative relations. However, associates tend to confound semantic features or morphological representations, such as whole-part relations and compounds (e.g., BOAT-anchor, BEE-hive). Using a picture-word interference paradigm and functional magnetic resonance imaging (fMRI), we manipulated categorical (COW-rat) and thematic (COW-pasture) TARGET-distractor relations in a balanced design, finding interference and facilitation effects on naming latencies, respectively, as well as differential patterns of brain activation compared with an unrelated distractor condition. While both types of distractor relation activated the middle portion of the left middle temporal gyrus (MTG) consistent with retrieval of conceptual or lexical representations, categorical relations involved additional activation of posterior left MTG, consistent with retrieval of a lexical cohort. Thematic relations involved additional activation of the left angular gyrus. These results converge with recent lesion evidence implicating the left inferior parietal lobe in processing thematic relations and may indicate a potential role for this region during spoken word production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contemporary models of spoken word production assume conceptual feature sharing determines the speed with which objects are named in categorically-related contexts. However, statistical models of concept representation have also identified a role for feature distinctiveness, i.e., features that identify a single concept and serve to distinguish it quickly from other similar concepts. In three experiments we investigated whether distinctive features might explain reports of counter-intuitive semantic facilitation effects in the picture word interference (PWI) paradigm. In Experiment 1, categorically-related distractors matched in terms of semantic similarity ratings (e.g., zebra and pony) and manipulated with respect to feature distinctiveness (e.g., a zebra has stripes unlike other equine species) elicited interference effects of comparable magnitude. Experiments 2 and 3 investigated the role of feature distinctiveness with respect to reports of facilitated naming with part-whole distractor-target relations (e.g., a hump is a distinguishing part of a CAMEL, whereas knee is not, vs. an unrelated part such as plug). Related part distractors did not influence target picture naming latencies significantly when the part denoted by the related distractor was not visible in the target picture (whether distinctive or not; Experiment 2). When the part denoted by the related distractor was visible in the target picture, non-distinctive part distractors slowed target naming significantly at SOA of -150 ms (Experiment 3). Thus, our results show that semantic interference does occur for part-whole distractor-target relations in PWI, but only when distractors denote features shared with the target and other category exemplars. We discuss the implications of these results for some recently developed, novel accounts of lexical access in spoken word production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the employment of semantic and conceptual structures in module design, specifically course modules. Additionally, it suggests other uses of these structures in aiding teaching and learning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cost-effective semantic description and annotation of shared knowledge resources has always been of great importance for digital libraries and large scale information systems in general. With the emergence of the Social Web and Web 2.0 technologies, a more effective semantic description and annotation, e.g., folksonomies, of digital library contents is envisioned to take place in collaborative and personalised environments. However, there is a lack of foundation and mathematical rigour for coping with contextualised management and retrieval of semantic annotations throughout their evolution as well as diversity in users and user communities. In this paper, we propose an ontological foundation for semantic annotations of digital libraries in terms of flexonomies. The proposed theoretical model relies on a high dimensional space with algebraic operators for contextualised access of semantic tags and annotations. The set of the proposed algebraic operators, however, is an adaptation of the set theoretic operators selection, projection, difference, intersection, union in database theory. To this extent, the proposed model is meant to lay the ontological foundation for a Digital Library 2.0 project in terms of geometric spaces rather than logic (description) based formalisms as a more efficient and scalable solution to the semantic annotation problem in large scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A retrieval model describes the transformation of a query into a set of documents. The question is: what drives this transformation? For semantic information retrieval type of models this transformation is driven by the content and structure of the semantic models. In this case, Knowledge Organization Systems (KOSs) are the semantic models that encode the meaning employed for monolingual and cross-language retrieval. The focus of this research is the relationship between these meanings’ representations and their role and potential in augmenting existing retrieval models effectiveness. The proposed approach is unique in explicitly interpreting a semantic reference as a pointer to a concept in the semantic model that activates all its linked neighboring concepts. It is in fact the formalization of the information retrieval model and the integration of knowledge resources from the Linguistic Linked Open Data cloud that is distinctive from other approaches. The preprocessing of the semantic model using Formal Concept Analysis enables the extraction of conceptual spaces (formal contexts)that are based on sub-graphs from the original structure of the semantic model. The types of conceptual spaces built in this case are limited by the KOSs structural relations relevant to retrieval: exact match, broader, narrower, and related. They capture the definitional and relational aspects of the concepts in the semantic model. Also, each formal context is assigned an operational role in the flow of processes of the retrieval system enabling a clear path towards the implementations of monolingual and cross-lingual systems. By following this model’s theoretical description in constructing a retrieval system, evaluation results have shown statistically significant results in both monolingual and bilingual settings when no methods for query expansion were used. The test suite was run on the Cross-Language Evaluation Forum Domain Specific 2004-2006 collection with additional extensions to match the specifics of this model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the book Conceptual Spaces: the Geometry of Thought [2000] Peter Gärdenfors proposes a new framework for cognitive science. Complementary to symbolic and subsymbolic [connectionist] descriptions, conceptual spaces are semantic structures constructed from empirical data representing the universe of mental states. We argue that Gärdenfors' modeling can be used in consciousness research to describe the phenomenal conscious world, its elements and their intrinsic relations. The conceptual space approach affords the construction of a universal state space of human consciousness, where all possible kinds of human conscious states could be mapped. Starting from this approach, we discuss the inclusion of feelings and emotions in conceptual spaces, and their relation to perceptual and cognitive states. Current debate on integration of affect/emotion and perception/cognition allows three possible descriptive alternatives: emotion resulting from basic cognition; cognition resulting from basic emotion, and both as relatively independent functions integrated by brain mechanisms. Finding a solution for this issue is an important step in any attempt of successful modeling of natural or artificial consciousness. After making a brief review of proposals in this area, we summarize the essentials of a new model of consciousness based on neuro-astroglial interactions. © 2011 World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A semantic approach towards political conflict first emerged in the 1930s and provides the methodological foundations for the description of political conflicts, in particular as the correlation between the language of description and reality. Any military or political confrontation presupposes axiological, conceptual and ideological confrontation. The form of adequate description can only be comprehended if the characteristic features of its language (structure) and thesaurus are revealed. Admitting the possibility of different descriptions implies the necessity of analysing this possible ambiguity, i.e. the characteristic features of the language which enable us to form various statements, including mutually exclusive ones. The insoluble task of finding a middle ground between the viewpoints of the conflicting parties should be replaced by soluble procedures of explaining and assessing the conflicting axiologies. For the description of conflict situations, when it is essential to represent various positions within a uniform system, an apparatus of model semantics seems to be the most appropriate one both for generating alternatives and for bringing them together in a modal system of a world in which procedures of transition from one world to another (i.e. the transworld compatibility between them) are also reflected. Reality is reconstructed not as a sort of middle ground between the mutually exclusive approaches nor as their sum, but as a result of the overlapping of various worlds and the procedures of transition from one state of affairs to another. The description of a conflict is therefore seen as a system of worlds connected by modal relations, with a system of worlds emerging as a reality to be described. This approach makes it possible to describe the processes from the points of view of the participating parties and, at the same time, to reveal their basic attitudes. The main idea of this research is shown by the problems analysed: the description of conflict as methodology; language and behaviour (general problems of semiotic description), the logico-semantic analysis of the notions of "problem and conflict", "Genesis and Chronology", "the recurrent model of the (historical) explanation and interpretation of the conflict". Zolyan used data on the Karabagh conflict to demonstrate the dependence of the structure of semio-cultural codes on current political development and considered post-soviet history as a semio-cultural problem. He sought to consider and reveal the logic of manipulations with history, and proposed the logic of preferences as a possible instrument for achieving compromise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coarse semantic encoding and broad categorization behavior are the hallmarks of the right cerebral hemisphere's contribution to language processing. We correlated 40 healthy subjects' breadth of categorization as assessed with Pettigrew's category width scale with lateral asymmetries in perceptual and representational space. Specifically, we hypothesized broader category width to be associated with larger leftward spatial biases. For the 20 men, but not the 20 women, this hypothesis was confirmed both in a lateralized tachistoscopic task with chimeric faces and a random digit generation task; the higher a male participant's score on category width, the more pronounced were his left-visual field bias in the judgement of chimeric faces and his small-number preference in digit generation ("small" is to the left of "large" in number space). Subjects' category width was unrelated to lateral displacements in a blindfolded tactile-motor rod centering task. These findings indicate that visual-spatial functions of the right hemisphere should not be considered independent of the same hemisphere's contribution to language. Linguistic and spatial cognition may be more tightly interwoven than is currently assumed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.