926 resultados para Conceptual Design
Resumo:
These three papers describe an approach to the synthesis of solutions to a class of mechanical design problems; these involve transmission and transformation of mechanical forces and motion, and can be described by a set of inputs and outputs. The approach involves (1) identifying a set of primary functional elements and rules of combining them, and (2) developing appropriate representations and reasoning procedures for synthesising solution concepts using these elements and their combination rules; these synthesis procedures can produce an exhaustive set of solution concepts, in terms of their topological as well as spatial configurations, to a given design problem. This paper (Part III) describes a constraint propagation procedure which, using a knowledge base of spatial information about a set of primary functional elements, can produce possible spatial configurations of solution concepts generated in Part II.
Resumo:
A superconducting fault current limiter (SFCL) for 6.6 kV and 400 A installed in a cubicle for a distribution network substation was conceptually designed. The SFCL consists of parallel- and series-connected superconducting YBCO elements and a limiting resistor. Before designing the SFCL, some tests were carried out. The width and length of each element used in the tests are 30 mm and 210 mm, respectively. The element consists of YBCO thin film of about 200 nm in thickness on cerium dioxide (CeO2) as a cap-layer on a sapphire substrate by metal-organic deposition with a protective metal coat. In the tests, characteristics of each element, such as over-current, withstand-voltage, and so on, were obtained. From these characteristics, series and parallel connections of the elements, called units, were considered. The characteristics of the units were obtained by tests. From the test results, a single phase prototype SFCL was manufactured and tested. Thus, an SFCL rated at 6.6 kV and 400 A can be designed. © 2009 IEEE.
Resumo:
The present study details the conceptual design for a 220-passenger laminar-flying-wing aircraft, utilising distributed suction, with a cruise Mach number of 0.67, over a range of 9000 km. The estimated fuel burn is 13.9 g/pax.km, demonstrating substantial gains relative to current, conventional, passenger aircraft. For comparison, a conventional aircraft with a high-mounted, unswept, wing is designed for the same mission specification, and is shown to have a fuel burn of 15 g/pax.km. Despite significant aerodynamic efficiency gains, the fuel burn of the laminar flying wing is only marginally better as it suffers from a poor cruise engine efficiency and is much heavier. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This work presents simplified 242mAm-fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. Optimization of the battery operating characteristics and dimensions was performed. The calculations of power conversion efficiency under thermal and nuclear design constraints showed that 5.6 W e/kg power density can be achieved, which corresponds to conversion efficiency of about 4%. A system with about 190 cm outer radius translates into 17.8 MT mass per 100 kW e. Total power scales linearly with the outer surface area of the battery through which the residual heat is rejected. Tradeoffs between the battery lifetime, mass, dimensions, power rating, and conversion efficiency are presented and discussed. The battery can be used in a wide variety of interplanetary missions with power requirements in the kW to MW range. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
This paper details the prototyping of a novel three axial micro probe based on utilisation of piezoelectric sensors and actuators for true three dimensional metrology and measurements at micro- and nanometre scale. Computational mechanics is used first to model and simulate the performance of the conceptual design of the micro-probe. Piezoelectric analysis is conducted to understand performance of three different materials - silicon, glassy carbon, and nickel - and the effect of load parameters (amplitude, frequency, phase angle) on the magnitude of vibrations. Simulations are also used to compare several design options for layout of the lead zirconium titanate (PZT) sensors and to identify the most feasible from fabrication point of view design. The material options for the realisation of the device have been also tested. Direct laser machining was selected as the primary means of production. It is found that a Yb MOPA based fiber laser was capable of providing the necessary precision on glassy carbon (GC), although machining trials on Si and Ni were less successful due to residual thermal effects.To provide the active and sensing elements on the flexures of the probe, PZT thick films are developed and deposited at low temperatures (Lt720 degC) allowing a high quality functional ceramic to be directly integrated with selected materials. Characterisation of the materials has shown that the film has a homogenous and small pore microstructure.
Resumo:
The article presents cost modeling results from the application of the Genetic-Causal cost modeling principle. Industrial results from redesign are also presented to verify the opportunity for early concept cost optimization by using Genetic-Causal cost drivers to guide the conceptual design process for structural assemblies. The acquisition cost is considered through the modeling of the recurring unit cost and non-recurring design cost. The operational cost is modeled relative to acquisition cost and fuel burn for predominately metal or composites designs. The main contribution of this study is the application of the Genetic-Causal principle to the modeling of cost, helping to understand how conceptual design parameters impact on cost, and linking that to customer requirements and life cycle cost.