997 resultados para Computing clouds


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diversity in the way cloud providers o↵er their services, give their SLAs, present their QoS, or support di↵erent technologies, makes very difficult the portability and interoperability of cloud applications, and favours the well-known vendor lock-in problem. We propose a model to describe cloud applications and the required resources in an agnostic, and providers- and resources-independent way, in which individual application modules, and entire applications, may be re-deployed using different services without modification. To support this model, and after the proposal of a variety of cross-cloud application management tools by different authors, we propose going one step further in the unification of cloud services with a management approach in which IaaS and PaaS services are integrated into a unified interface. We provide support for deploying applications whose components are distributed on different cloud providers, indistinctly using IaaS and PaaS services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For multiple heterogeneous multicore server processors across clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues for large-scale server systems in current and future data centers. The multicore processor technology provides new levels of performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers. Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research problems in large-scale data centers are well-defined multivariable optimization problems, which explore the power-performance tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We model a multicore server processor as a queuing system with multiple servers. Our optimization problems are solved for two different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management and performance optimization in data centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By 2010, cloud computing had become established as a new model of IT provisioning for service providers. New market players and businesses emerged, threatening the business models of established market players. This teaching case explores the challenges arising through the impact of the new cloud computing technology on an established, multinational IT service provider called ITSP. Should the incumbent vendors adopt cloud computing offerings? And, if so, what form should those offerings take? The teaching case focuses on the strategic dimensions of technological developments, their threats and opportunities. It requires strategic decision making and forecasting under high uncertainty. The critical question is whether cloud computing is a disruptive technology or simply an alternative channel to supply computing resources over the Internet. The case challenges students to assess this new technology and plan ITSP’s responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the development of the computer, user orientated innovations such as graphical operating systems, mice, and mobile devices have made computing ubiquitous in modern society. The cloud is the next step in this process. Through the cloud, computing has undergone co modification and has been made available as a utility. However, in comparison to other commodities such as water and electricity, clouds (in particular IaaS and PaaS) have not reached the same penetration into the global market. We propose that through further abstraction, future clouds will be ubiquitous and transparent, made accessible to ordinary users and integrated into all aspects of society. This paper presents a concept and path to this ubiquitous and transparent cloud, accessible by the masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the strong demands of physical resources of big data, it is an effective and efficient way to store and process big data in clouds, as cloud computing allows on-demand resource provisioning. With the increasing requirements for the resources provisioned by cloud platforms, the Quality of Service (QoS) of cloud services for big data management is becoming significantly important. Big data has the character of sparseness, which leads to frequent data accessing and processing, and thereby causes huge amount of energy consumption. Energy cost plays a key role in determining the price of a service and should be treated as a first-class citizen as other QoS metrics, because energy saving services can achieve cheaper service prices and environmentally friendly solutions. However, it is still a challenge to efficiently schedule Virtual Machines (VMs) for service QoS enhancement in an energy-aware manner. In this paper, we propose an energy-aware dynamic VM scheduling method for QoS enhancement in clouds over big data to address the above challenge. Specifically, the method consists of two main VM migration phases where computation tasks are migrated to servers with lower energy consumption or higher performance to reduce service prices and execution time. Extensive experimental evaluation demonstrates the effectiveness and efficiency of our method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proliferation of cloud computing allows users to flexibly store, re-compute or transfer large generated datasets with multiple cloud service providers. However, due to the pay-As-you-go model, the total cost of using cloud services depends on the consumption of storage, computation and bandwidth resources which are three key factors for the cost of IaaS-based cloud resources. In order to reduce the total cost for data, given cloud service providers with different pricing models on their resources, users can flexibly choose a cloud service to store a generated dataset, or delete it and choose a cloud service to regenerate it whenever reused. However, finding the minimum cost is a complicated yet unsolved problem. In this paper, we propose a novel algorithm that can calculate the minimum cost for storing and regenerating datasets in clouds, i.e. whether datasets should be stored or deleted, and furthermore where to store or to regenerate whenever they are reused. This minimum cost also achieves the best trade-off among computation, storage and bandwidth costs in multiple clouds. Comprehensive analysis and rigid theorems guarantee the theoretical soundness of the paper, and general (random) simulations conducted with popular cloud service providers' pricing models demonstrate the excellent performance of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile cloud computing has been involved as a key enabling technology to overcome the physical limitations of mobile devices towards scalable and flexible mobile services. In the mobile cloud environment, searchable encryption, which enables directly search over encrypted data, is a key technique to maintain both the privacy and usability of outsourced data in cloud. On addressing the issue, many research efforts resolve to using the searchable symmetric encryption (SSE) and searchable public-key encryption (SPE). In this paper, we improve the existing works by developing a more practical searchable encryption technique, which can support dynamic updating operations in the mobile cloud applications. Specifically, we make our efforts on taking the advantages of both SSE and SPE techniques, and propose PSU, a Personalized Search scheme over encrypted data with efficient and secure Updates in mobile cloud. By giving thorough security analysis, we demonstrate that PSU can achieve a high security level. Using extensive experiments in a realworld mobile environment, we show that PUS is more efficient compared with the existing proposals.

Relevância:

20.00% 20.00%

Publicador: