960 resultados para Computer software--Development
Resumo:
Software integration is a stage in a software development process to assemble separate components to produce a single product. It is important to manage the risks involved and being able to integrate smoothly, because software cannot be released without integrating it first. Furthermore, it has been shown that the integration and testing phase can make up 40 % of the overall project costs. These issues can be mitigated by using a software engineering practice called continuous integration. This thesis work presents how continuous integration is introduced to the author's employer organisation. This includes studying how the continuous integration process works and creating the technical basis to start using the process on future projects. The implemented system supports software written in C and C++ programming languages on Linux platform, but the general concepts can be applied to any programming language and platform by selecting the appropriate tools. The results demonstrate in detail what issues need to be solved when the process is acquired in a corporate environment. Additionally, they provide an implementation and process description suitable to the organisation. The results show that continuous integration can reduce the risks involved in a software process and increase the quality of the product as well.
Resumo:
Large enterprises have for many years employed eBusiness solutions in order to improve their efficiency. Smaller companies, however, have not been able to leverage these technologies due to the high level of know-how and resources required in implementing them. To solve this, novel software services are being developed to facilitate eBusiness adoption for the small enterprise with the aim of making B2Bi feasible not only between large organisations but also between trading partners of all sizes. The objective of this study was to find what standards and techniques on eBusiness and software testing and quality assurance fit best for building these new kinds of software considering the requirements their unique eBusiness approach poses. The research was conducted as a literature study with focus on standards on software testing and quality assurance together with standards on eBusiness. The study showed that the current software testing and quality assurance standards do not possess such characteristics as would make select standards evidently better fitted for building this type of software, which were established to be best developed as web services in order for them to meet their requirements. A selection of eBusiness standards and technologies was proposed to support this approach. The main finding in the study was, however, that these kinds of web services that have high interoperability requirements will have to be able to carry out automated interoperability and conformance testing as part of their operation; this objective dictates how the software are built and how testing during software development is to be done. The study showed that research on automated interoperability and conformance testing for web services is still limited and more research is needed to make the building of highly-interoperable web services more feasible.
Resumo:
The front end of innovation is regarded as one of the most important steps in building new software products or services, and the most significant benefits in software development can be achieved through improvements in the front end activities. Problems in the front end phase have an impact on customer dissatisfaction with delivered software, and on the effectiveness of the entire software development process. When these processes are improved, the likelihood of delivering high quality software and business success increases. This thesis highlights the challenges and problems related to the early phases of software development, and provides new methods and tools for improving performance in the front end activities of software development. The theoretical framework of this study comprises two fields of research. The first section belongs to the field of innovation management, and especially to the management of the early phases of the innovation process, i.e. the front end of innovation. The second section of the framework is closely linked to the processes of software engineering, especially to the early phases of the software development process, i.e. the practice of requirements engineering. Thus, this study extends the theoretical knowledge and discloses the differences and similarities in these two fields of research. In addition, this study opens up a new strand for academic discussion by connecting these research directions. Several qualitative business research methodologies have been utilized in the individual publications to solve the research questions. The theoretical and managerial contribution of the study can be divided into three areas: 1) processes and concepts, 2) challenges and development needs, and 3) means and methods for the front end activities of software development. First, the study discloses the difference and similarities between the concepts of the front end of innovation and requirements engineering, and proposes a new framework for managing the front end of the software innovation process, bringing business and innovation perspectives into software development. Furthermore, the study discloses managerial perceptions of the similarities and differences in the concept of the front end of innovation between the software industry and the traditional industrial sector. Second, the study highlights the challenges and development needs in the front end phase of software development, especially challenges in communication, such as linguistic problems, ineffective communication channels, a communication gap between users/customers and software developers, and participation of multiple persons in software development. Third, the study proposes new group methods for improving the front end activities of software development, especially customer need assessment, and the elicitation of software requirements.
Resumo:
The size and complexity of projects in the software development are growing very fast. At the same time, the proportion of successful projects is still quite low according to the previous research. Although almost every project's team knows main areas of responsibility which would help to finish project on time and on budget, this knowledge is rarely used in practice. So it is important to evaluate the success of existing software development projects and to suggest a method for evaluating success chances which can be used in the software development projects. The main aim of this study is to evaluate the success of projects in the selected geographical region (Russia-Ukraine-Belarus). The second aim is to compare existing models of success prediction and to determine their strengths and weaknesses. Research was done as an empirical study. A survey with structured forms and theme-based interviews were used as the data collection methods. The information gathering was done in two stages. At the first stage, project manager or someone with similar responsibilities answered the questions over Internet. At the second stage, the participant was interviewed; his or her answers were discussed and refined. It made possible to get accurate information about each project and to avoid errors. It was found out that there are many problems in the software development projects. These problems are widely known and were discussed in literature many times. The research showed that most of the projects have problems with schedule, requirements, architecture, quality, and budget. Comparison of two models of success prediction presented that The Standish Group overestimates problems in project. At the same time, McConnell's model can help to identify problems in time and avoid troubles in future. A framework for evaluating success chances in distributed projects was suggested. The framework is similar to The Standish Group model but it was customized for distributed projects.
Resumo:
Today cloud computing is the next stage in development information-oriented society in field of information technologies. Great attention is paid to cloud computing in general, but the lack of scientific consideration to components brings to the problem, that not all aspects are well examined. This thesis is an attempt to consider Platform as a Service (a technology of providing development environment through the Internet) from divergent angles. Technical characteristics, costs, time, estimation of effectiveness, risks, strategies that can be applied, migration process, advantages and disadvantages and the future of the approach are examined to get the overall picture of cloud platforms. During the work literature study was used to examine Platform as a Service, characteristics of existent cloud platforms were explored and a model of a typical software development company was developed to create a scenario of migration to cloud technologies. The research showed that besides all virtues in reducing costs and time, cloud platforms have some significant obstacles in adoption. Privacy, security and insufficient legislation impede the concept to be widespread.
Resumo:
A software development process is a predetermined sequence of steps to create a piece of software. A software development process is used, so that an implementing organization could gain significant benefits. The benefits for software development companies, that can be attributed to software process improvement efforts, are improved predictability in the development effort and improved quality software products. The implementation, maintenance, and management of a software process as well as the software process improvement efforts are expensive. Especially the implementation phase is expensive with a best case scenario of a slow return on investment. Software processes are rare in very small software development companies because of the cost of implementation and an improbable return on investment. This study presents a new method to enable benefits that are usually related to software process improvement to small companies with a low cost. The study presents reasons for the development of the method, a description of the method, and an implementation process for the method, as well as a theoretical case study of a method implementation. The study's focus is on describing the method. The theoretical use case is used to illustrate the theory of the method and the implementation process of the method. The study ends with a few conclusions on the method and on the method's implementation process. The main conclusion is that the method requires further study as well as implementation experiments to asses the value of the method.
Resumo:
Agile software development has grown in popularity starting from the agile manifesto declared in 2001. However there is a strong belief that the agile methods are not suitable for embedded, critical or real-time software development, even though multiple studies and cases show differently. This thesis will present a custom agile process that can be used in embedded software development. The reasons for presumed unfitness of agile methods in embedded software development have mainly based on the feeling of these methods providing no real control, no strict discipline and less rigor engineering practices. One starting point is to provide a light process with disciplined approach to the embedded software development. Agile software development has gained popularity due to the fact that there are still big issues in software development as a whole. Projects fail due to schedule slips, budget surpassing or failing to meet the business needs. This does not change when talking about embedded software development. These issues are still valid, with multiple new ones rising from the quite complex and hard domain the embedded software developers work in. These issues are another starting point for this thesis. The thesis is based heavily on Feature Driven Development, a software development methodology that can be seen as a runner up to the most popular agile methodologies. The FDD as such is quite process oriented and is lacking few practices considered commonly as extremely important in agile development methodologies. In order for FDD to gain acceptance in the software development community it needs to be modified and enhanced. This thesis presents an improved custom agile process that can be used in embedded software development projects with size varying from 10 to 500 persons. This process is based on Feature Driven Development and by suitable parts to Extreme Programming, Scrum and Agile Modeling. Finally this thesis will present how the new process responds to the common issues in the embedded software development. The process of creating the new process is evaluated at the retrospective and guidelines for such process creation work are introduced. These emphasize the agility also in the process development through early and frequent deliveries and the team work needed to create suitable process.
Resumo:
In this thesis, a computer software for defining the geometry for a centrifugal compressor impeller is designed and implemented. The project is done under the supervision of Laboratory of Fluid Dynamics in Lappeenranta University of Technology. This thesis is similar to the thesis written by Tomi Putus (2009) in which a centrifugal compressor impeller flow channel is researched and commonly used design practices are reviewed. Putus wrote a computer software which can be used to define impeller’s three-dimensional geometry based on the basic geometrical dimensions given by a preliminary design. The software designed in this thesis is almost similar but it uses a different programming language (C++) and a different way to define the shape of the impeller meridional projection.
Resumo:
Dagens programvaruindustri står inför alltmer komplicerade utmaningar i en värld där programvara är nästan allstädes närvarande i våra dagliga liv. Konsumenten vill ha produkter som är pålitliga, innovativa och rika i funktionalitet, men samtidigt också förmånliga. Utmaningen för oss inom IT-industrin är att skapa mer komplexa, innovativa lösningar till en lägre kostnad. Detta är en av orsakerna till att processförbättring som forskningsområde inte har minskat i betydelse. IT-proffs ställer sig frågan: “Hur håller vi våra löften till våra kunder, samtidigt som vi minimerar vår risk och ökar vår kvalitet och produktivitet?” Inom processförbättringsområdet finns det olika tillvägagångssätt. Traditionella processförbättringsmetoder för programvara som CMMI och SPICE fokuserar på kvalitets- och riskaspekten hos förbättringsprocessen. Mer lättviktiga metoder som t.ex. lättrörliga metoder (agile methods) och Lean-metoder fokuserar på att hålla löften och förbättra produktiviteten genom att minimera slöseri inom utvecklingsprocessen. Forskningen som presenteras i denna avhandling utfördes med ett specifikt mål framför ögonen: att förbättra kostnadseffektiviteten i arbetsmetoderna utan att kompromissa med kvaliteten. Den utmaningen attackerades från tre olika vinklar. För det första förbättras arbetsmetoderna genom att man introducerar lättrörliga metoder. För det andra bibehålls kvaliteten genom att man använder mätmetoder på produktnivå. För det tredje förbättras kunskapsspridningen inom stora företag genom metoder som sätter samarbete i centrum. Rörelsen bakom lättrörliga arbetsmetoder växte fram under 90-talet som en reaktion på de orealistiska krav som den tidigare förhärskande vattenfallsmetoden ställde på IT-branschen. Programutveckling är en kreativ process och skiljer sig från annan industri i det att den största delen av det dagliga arbetet går ut på att skapa något nytt som inte har funnits tidigare. Varje programutvecklare måste vara expert på sitt område och använder en stor del av sin arbetsdag till att skapa lösningar på problem som hon aldrig tidigare har löst. Trots att detta har varit ett välkänt faktum redan i många decennier, styrs ändå många programvaruprojekt som om de vore produktionslinjer i fabriker. Ett av målen för rörelsen bakom lättrörliga metoder är att lyfta fram just denna diskrepans mellan programutvecklingens innersta natur och sättet på vilket programvaruprojekt styrs. Lättrörliga arbetsmetoder har visat sig fungera väl i de sammanhang de skapades för, dvs. små, samlokaliserade team som jobbar i nära samarbete med en engagerad kund. I andra sammanhang, och speciellt i stora, geografiskt utspridda företag, är det mera utmanande att införa lättrörliga metoder. Vi har nalkats utmaningen genom att införa lättrörliga metoder med hjälp av pilotprojekt. Detta har två klara fördelar. För det första kan man inkrementellt samla kunskap om metoderna och deras samverkan med sammanhanget i fråga. På så sätt kan man lättare utveckla och anpassa metoderna till de specifika krav som sammanhanget ställer. För det andra kan man lättare överbrygga motstånd mot förändring genom att introducera kulturella förändringar varsamt och genom att målgruppen får direkt förstahandskontakt med de nya metoderna. Relevanta mätmetoder för produkter kan hjälpa programvaruutvecklingsteam att förbättra sina arbetsmetoder. När det gäller team som jobbar med lättrörliga och Lean-metoder kan en bra uppsättning mätmetoder vara avgörande för beslutsfattandet när man prioriterar listan över uppgifter som ska göras. Vårt fokus har legat på att stöda lättrörliga och Lean-team med interna produktmätmetoder för beslutsstöd gällande så kallad omfaktorering, dvs. kontinuerlig kvalitetsförbättring av programmets kod och design. Det kan vara svårt att ta ett beslut att omfaktorera, speciellt för lättrörliga och Lean-team, eftersom de förväntas kunna rättfärdiga sina prioriteter i termer av affärsvärde. Vi föreslår ett sätt att mäta designkvaliteten hos system som har utvecklats med hjälp av det så kallade modelldrivna paradigmet. Vi konstruerar även ett sätt att integrera denna mätmetod i lättrörliga och Lean-arbetsmetoder. En viktig del av alla processförbättringsinitiativ är att sprida kunskap om den nya programvaruprocessen. Detta gäller oavsett hurdan process man försöker introducera – vare sig processen är plandriven eller lättrörlig. Vi föreslår att metoder som baserar sig på samarbete när processen skapas och vidareutvecklas är ett bra sätt att stöda kunskapsspridning på. Vi ger en översikt över författarverktyg för processer på marknaden med det förslaget i åtanke.
Resumo:
The value and benefits of user experience (UX) are widely recognized in the modern world and UX is seen as an integral part of many fields. This dissertation integrates UX and understanding end users with the early phases of software development. The concept of UX is still unclear, as witnessed by more than twenty-five definitions and ongoing argument about its different aspects and attributes. This missing consensus forms a problem in creating a link between UX and software development: How to take the UX of end users into account when it is unclear for software developers what UX stands for the end users. Furthermore, currently known methods to estimate, evaluate and analyse UX during software development are biased in favor of the phases where something concrete and tangible already exists. It would be beneficial to further elaborate on UX in the beginning phases of software development. Theoretical knowledge from the fields of UX and software development is presented and linked with surveyed and analysed UX attribute information from end users and UX professionals. Composing the surveys around the identified 21 UX attributes is described and the results are analysed in conjunction with end user demographics. Finally the utilization of the gained results is explained with a proof of concept utility, the Wizard of UX, which demonstrates how UX can be integrated into early phases of software development. The process of designing, prototyping and testing this utility is an integral part of this dissertation. The analyses show statistically significant dependencies between appreciation towards UX attributes and surveyed end user demographics. In addition, tests conducted by software developers and industrial UX designer both indicate the benefits and necessity of the prototyped Wizard of UX utility. According to the conducted tests, this utility meets the requirements set for it: It provides a way for software developers to raise their know-how of UX and a possibility to consider the UX of end users with statistical user profiles during the early phases of software development. This dissertation produces new and relevant information for the UX and software development communities by demonstrating that it is possible to integrate UX as a part of the early phases of software development.
Resumo:
Formal software development processes and well-defined development methodologies are nowadays seen as the definite way to produce high-quality software within time-limits and budgets. The variety of such high-level methodologies is huge ranging from rigorous process frameworks like CMMI and RUP to more lightweight agile methodologies. The need for managing this variety and the fact that practically every software development organization has its own unique set of development processes and methods have created a profession of software process engineers. Different kinds of informal and formal software process modeling languages are essential tools for process engineers. These are used to define processes in a way which allows easy management of processes, for example process dissemination, process tailoring and process enactment. The process modeling languages are usually used as a tool for process engineering where the main focus is on the processes themselves. This dissertation has a different emphasis. The dissertation analyses modern software development process modeling from the software developers’ point of view. The goal of the dissertation is to investigate whether the software process modeling and the software process models aid software developers in their day-to-day work and what are the main mechanisms for this. The focus of the work is on the Software Process Engineering Metamodel (SPEM) framework which is currently one of the most influential process modeling notations in software engineering. The research theme is elaborated through six scientific articles which represent the dissertation research done with process modeling during an approximately five year period. The research follows the classical engineering research discipline where the current situation is analyzed, a potentially better solution is developed and finally its implications are analyzed. The research applies a variety of different research techniques ranging from literature surveys to qualitative studies done amongst software practitioners. The key finding of the dissertation is that software process modeling notations and techniques are usually developed in process engineering terms. As a consequence the connection between the process models and actual development work is loose. In addition, the modeling standards like SPEM are partially incomplete when it comes to pragmatic process modeling needs, like light-weight modeling and combining pre-defined process components. This leads to a situation, where the full potential of process modeling techniques for aiding the daily development activities can not be achieved. Despite these difficulties the dissertation shows that it is possible to use modeling standards like SPEM to aid software developers in their work. The dissertation presents a light-weight modeling technique, which software development teams can use to quickly analyze their work practices in a more objective manner. The dissertation also shows how process modeling can be used to more easily compare different software development situations and to analyze their differences in a systematic way. Models also help to share this knowledge with others. A qualitative study done amongst Finnish software practitioners verifies the conclusions of other studies in the dissertation. Although processes and development methodologies are seen as an essential part of software development, the process modeling techniques are rarely used during the daily development work. However, the potential of these techniques intrigues the practitioners. As a conclusion the dissertation shows that process modeling techniques, most commonly used as tools for process engineers, can also be used as tools for organizing the daily software development work. This work presents theoretical solutions for bringing the process modeling closer to the ground-level software development activities. These theories are proven feasible by presenting several case studies where the modeling techniques are used e.g. to find differences in the work methods of the members of a software team and to share the process knowledge to a wider audience.
Resumo:
Corporate decision to scale Agile Software development methodologies in offshoring environment has been obstructed due to possible challenges in scaling agile as agile methodologies are regarded to be suitable for small project and co-located team only. Although model such as Agile Scaling Model (ASM) has been developed for scaling Agile with different factors, inabilities of companies to figure out challenges and addressing them lead to failure of project rather than gaining the benefits of using agile methodologies. This failure can be avoided, when scaling agile in IT offshoring environment, by determining key challenges associated in scaling agile in IT offshoring environment and then preparing strategies for addressing those key challenges. These key challenges in scaling agile with IT offshoring environment can be determined by studying issues related with Offshoring and Agile individually and also considering the positive impact of agile methodology in offshoring environment. Then, possible strategies to tackle these key challenges are developed according to the nature of individual challenges and utilizing the benefits of different agile methodologies to address individual situation. Thus, in this thesis, we proposed strategy of using hybrid agile method, which is increasing trend due to adaptive nature of Agile. Determination of the key challenges and possible strategies for tackling those challenges are supported with the survey conducted in the researched organization.
Resumo:
The rate of adoption and use of learning management systems to support teaching and learning processes in academic institutions is growing rapidly. Universities are acquiring systems with functionalities that can match with their specific needs and requirements. Moodle is one of the most popular and widely deployed learning management systems in academic institutions today. However, apart from the system, universities tend to maintain other applications for the purpose of supplementing their teaching and learning processes. This situation is similar to Lappeenranta University of Technology (LUT), which is our case study in this project. Apart from Moodle, the university also maintains other systems such as Oodi, Noppa and Uni portal for the purpose of supporting its educational activities. This thesis has two main goals. The first goal is to understand the specific role of Moodle at LUT. This information is fundamental in assessing whether Moodle is needed in the university’s current teaching and learning environment. The second aim is to provide insights to teachers and other departmental stakeholders on how Moodle can provide added value in the teaching of a software development course. In response to this, a Moodle module for a software development course is created and the underlying features are tested. Results of the constructive work proposed some improvements through (i) the use of Moodle for in-class surveys, (ii) transfer of grades from Moodle to Oodi, (iii) use of Moodle in self-study courses and MOOCs, (iv) online examinations, and (v) Moodle integrations with third party applications. The proposed items were then evaluated for their utility through interviews of five expert interviews. The final results of this work are considered useful to LUT administration and management specifically on ways that Moodle can bring changes to the university at managerial, economical and technical level. It also poses some challenges on platform innovations and research.
Resumo:
Adapting and scaling up agile concepts, which are characterized by iterative, self-directed, customer value focused methods, may not be a simple endeavor. This thesis concentrates on studying challenges in a large-scale agile software development transformation in order to enhance understanding and bring insight into the underlying factors for such emerging challenges. This topic is approached through understanding the concepts of agility and different methods compared to traditional plan-driven processes, complex adaptive theory and the impact of organizational culture on agile transformational efforts. The empirical part was conducted by a qualitative case study approach. The internationally operating software development case organization had a year of experience of an agile transformation effort during it had also undergone organizational realignment efforts. The primary data collection was conducted through semi-structured interviews supported by participatory observation. As a result the identified challenges were categorized under four broad themes: organizational, management, team dynamics and process related. The identified challenges indicate that agility is a multifaceted concept. Agile practices may bring visibility in issues of which many are embedded in the organizational culture or in the management style. Viewing software development as a complex adaptive system could facilitate understanding of the underpinning philosophy and eventually solving the issues: interactions are more important than processes and solving a complex problem, such a novel software development, requires constant feedback and adaptation to changing requirements. Furthermore, an agile implementation seems to be unique in nature, and agents engaged in the interaction are the pivotal part of the success of achieving agility. In case agility is not a strategic choice for whole organization, it seems additional issues may arise due to different ways of working in different parts of an organization. Lastly, detailed suggestions to mitigate the challenges of the case organization are provided.
Resumo:
The purpose of this study was to explore software development methods and quality assurance practices used by South Korean software industry. Empirical data was collected by conducting a survey that focused on three main parts: software life cycle models and methods, software quality assurance including quality standards, the strengths and weaknesses of South Korean software industry. The results of the completed survey showed that the use of agile methods is slightly surpassing the use of traditional software development methods. The survey also revealed an interesting result that almost half of the South Korean companies do not use any software quality assurance plan in their projects. For the state of South Korean software industry large number of the respondents thought that despite of the weakness, the status of software development in South Korea will improve in the future.