971 resultados para Computer interfaces
Resumo:
In this paper, a new paradigm is presented, to improve the performance of audio-based P300 Brain-computer interfaces (BCIs), by using spatially distributed natural sound stimuli. The new paradigm was compared to a conventional paradigm using spatially distributed sound to demonstrate the performance of this new paradigm. The results show that the new paradigm enlarged the N200 and P300 components, and yielded significantly better BCI performance than the conventional paradigm.
Resumo:
Movement intention detection is important for development of intuitive movement based Brain Computer Interfaces (BCI). Various complex oscillatory processes are involved in producing voluntary movement intention. In this paper, temporal dynamics of electroencephalography (EEG) associated with movement intention and execution were studied using autocorrelation. It was observed that the trend of decay of autocorrelation of EEG changes before and during the voluntary movement. A novel feature for movement intention detection was developed based on relaxation time of autocorrelation obtained by fitting exponential decay curve to the autocorrelation. This new single trial feature was used to classify voluntary finger tapping trials from resting state trials with peak accuracy of 76.7%. The performance of autocorrelation analysis was compared with Motor-Related Cortical Potentials (MRCP).
Resumo:
Nowadays computers have advanced beyond the desktop into many parts of everyday life and objects. To achieve this we have to make the computer invisible, and making a computer invisible is not a matter of size of the hardware, it’s all about how the human perceives the computer. To make this possible, the interaction with the computer has to be done in an alternative way, such that the user doesn’t notice the usual computer interfaces (mouse and keyboard) when using it. Therefore this thesis focuses on physical objects that are interactive to achieve various purposes like persuasive objects for stress relief, persuasive objects to help the process of teaching, persuasive objects for fun, persuasive objects to display internet information and persuasive objects to make people feel more in community (exchange virtual emotions), persuasive objects are going to be created and evaluated to see if they have the power to simplify and turn our lives better. The persuasive objects developed employ technology like sensors, actuators, microcontrollers, and computer/web services’ communication. This Master thesis starts by presenting a comprehensive introduction of what are persuasive objects and some general information about several areas that are related to our persuasive objects like stress relief, work experience, multimedia education and other major aspects. It continues by describing related work done in this area. Then we have a detailed view of each persuasive object and finally this thesis finishes with a general conclusion and notion of future work.
Resumo:
The Brain-Computer Interfaces (BCI) have as main purpose to establish a communication path with the central nervous system (CNS) independently from the standard pathway (nervous, muscles), aiming to control a device. The main objective of the current research is to develop an off-line BCI that separates the different EEG patterns resulting from strictly mental tasks performed by an experimental subject, comparing the effectiveness of different signal-preprocessing approaches. We also tested different classification approaches: all versus all, one versus one and a hierarchic classification approach. No preprocessing techniques were found able to improve the system performance. Furthermore, the hierarchic approach proved to be capable to produce results above the expected by literature
Resumo:
This paper presents some findings regarding the interaction between different computer interfaces and different types of collective work. We want to claim that design in online learning environments has a paramount role in the type of collaboration that happens among participants. In this paper, we report on data that illustrate how teachers can collaborate online in order to learn how to use geometry software in teaching activities. A virtual environment which allows that construction to be carried out collectively, even if the participants are not sharing a classroom, is the setting for the research presented in this paper.
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper tries, across research, books, magazines and charts that relate to the architecture of today, establishing a direction as to the technological advances that may be involved in the architecture project. Such that the configuration space has flexibility to meet the basic architectural principles and the wishes of the user, who should participate as a key character of the decisions of spatialization - interface. Both the personal point of view of their social relations within the housing, and the functional environments equipped and qualified to meet expectations during its use. Respecting the power of free choice of human beings, not to put yourself to the detriment by excessive use of technology. And still look for ways to integrate the individual to society connected to your network - home. Keywords: interface, information, technology, space flexibility
Resumo:
The expressive possibilities within the field of surface design come up with increasingly larger with the emergence of technologies that allow the construction of forms and structures of high complexity such as three-dimensional printing. Establishing a relationship between design and complex systems, this work seeks to address the significant interrelationship of new paradigms of science, designed from concepts such as chaos, complexity and self-organization along with the cyber and parametric design, assuming thus the consequent impact of these in the creation and construction of process surfaces. Starting from the investigation of the applicability of the aforementioned conceptual bases, will be exemplified prospects of surface, produced in the first instance through computer interfaces, assigning the emergence of new creative processes and technology. Furthermore, elucidating biomimetics and its importance in the design of the design as a means of inspiration in complex systems of nature.
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application.
Resumo:
The majority of sensor network research deals with land-based networks, which are essentially two-dimensional, and thus the majority of simulation and animation tools also only handle such networks. Underwater sensor networks on the other hand, are essentially 3D networks because the depth at which a sensor node is located needs to be considered as well. Due to that additional dimension, specialized tools need to be used when conducting simulations for experimentation. The School of Engineering’s Underwater Sensor Network (UWSN) lab is conducting research on underwater sensor networks and requires simulation tools for 3D networks. The lab has extended NS-2, a widely used network simulator, so that it can simulate three-dimensional networks. However, NAM, a widely used network animator, currently only supports two-dimensional networks and no extensions have been implemented to give it three-dimensional capabilities. In this project, we develop a network visualization tool that functions similarly to NAM but is able to render network environments in full 3-D. It is able to take as input a NS-2 trace file (the same file taken as input by NAM), create the environment, position the sensor nodes, and animate the events of the simulation. Further, the visualization tool is easy to use, especially friendly to NAM users, as it is designed to follow the interfaces and functions similar to NAM. So far, the development has fulfilled the basic functionality. Future work includes fully functional capabilities for visualization and much improved user interfaces.
Resumo:
Bibliography: p. 62.