854 resultados para Computational intelligence techniques
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
This paper presents a Genetic Algorithms (GA) approach to resolve traffic conflicts at a railway junction. The formulation of the problem for the suitable application of GA will be discussed and three neighborhoods have been proposed for generation evolution. The performance of the GA is evaluated by computer simulation. This study paves the way for more applications of artificial intelligence techniques on a rather conservative industry.
Resumo:
The Guardian reportage of the United Kingdom Member of Parliament (MP) expenses scandal of 2009 used crowdsourcing and computational journalism techniques. Computational journalism can be broadly defined as the application of computer science techniques to the activities of journalism. Its foundation lies in computer assisted reporting techniques and its importance is increasing due to the: (a) increasing availability of large scale government datasets for scrutiny; (b) declining cost, increasing power and ease of use of data mining and filtering software; and Web 2.0; and (c) explosion of online public engagement and opinion.. This paper provides a case study of the Guardian MP expenses scandal reportage and reveals some key challenges and opportunities for digital journalism. It finds journalists may increasingly take an active role in understanding, interpreting, verifying and reporting clues or conclusions that arise from the interrogations of datasets (computational journalism). Secondly a distinction should be made between information reportage and computational journalism in the digital realm, just as a distinction might be made between citizen reporting and citizen journalism. Thirdly, an opportunity exists for online news providers to take a ‘curatorial’ role, selecting and making easily available the best data sources for readers to use (information reportage). These activities have always been fundamental to journalism, however the way in which they are undertaken may change. Findings from this paper may suggest opportunities and challenges for the implementation of computational journalism techniques in practice by digital Australian media providers, and further areas of research.
Resumo:
The Guardian reportage of the United Kingdom Member of Parliament (MP) expenses scandal of 2009 used crowdsourcing and computational journalism techniques. Computational journalism can be broadly defined as the application of computer science techniques to the activities of journalism. Its foundation lies in computer assisted reporting techniques and its importance is increasing due to the: (a) increasing availability of large scale government datasets for scrutiny; (b) declining cost, increasing power and ease of use of data mining and filtering software; and Web 2.0; and (c) explosion of online public engagement and opinion.. This paper provides a case study of the Guardian MP expenses scandal reportage and reveals some key challenges and opportunities for digital journalism. It finds journalists may increasingly take an active role in understanding, interpreting, verifying and reporting clues or conclusions that arise from the interrogations of datasets (computational journalism). Secondly a distinction should be made between information reportage and computational journalism in the digital realm, just as a distinction might be made between citizen reporting and citizen journalism. Thirdly, an opportunity exists for online news providers to take a ‘curatorial’ role, selecting and making easily available the best data sources for readers to use (information reportage). These activities have always been fundamental to journalism, however the way in which they are undertaken may change. Findings from this paper may suggest opportunities and challenges for the implementation of computational journalism techniques in practice by digital Australian media providers, and further areas of research.
Resumo:
Computational journalism involves the application of software and technologies to the activities of journalism, and it draws from the fields of computer science, the social sciences, and media and communications. New technologies may enhance the traditional aims of journalism, or may initiate greater interaction between journalists and information and communication technology (ICT) specialists. The enhanced use of computing in news production is related in particular to three factors: larger government data sets becoming more widely available; the increasingly sophisticated and ubiquitous nature of software; and the developing digital economy. Drawing upon international examples, this paper argues that computational journalism techniques may provide new foundations for original investigative journalism and increase the scope for new forms of interaction with readers. Computer journalism provides a major opportunity to enhance the delivery of original investigative journalism, and to attract and retain readers online.
Resumo:
Process mining encompasses the research area which is concerned with knowledge discovery from information system event logs. Within the process mining research area, two prominent tasks can be discerned. First of all, process discovery deals with the automatic construction of a process model out of an event log. Secondly, conformance checking focuses on the assessment of the quality of a discovered or designed process model in respect to the actual behavior as captured in event logs. Hereto, multiple techniques and metrics have been developed and described in the literature. However, the process mining domain still lacks a comprehensive framework for assessing the goodness of a process model from a quantitative perspective. In this study, we describe the architecture of an extensible framework within ProM, allowing for the consistent, comparative and repeatable calculation of conformance metrics. For the development and assessment of both process discovery as well as conformance techniques, such a framework is considered greatly valuable.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
Structural Support Vector Machines (SSVMs) have become a popular tool in machine learning for predicting structured objects like parse trees, Part-of-Speech (POS) label sequences and image segments. Various efficient algorithmic techniques have been proposed for training SSVMs for large datasets. The typical SSVM formulation contains a regularizer term and a composite loss term. The loss term is usually composed of the Linear Maximum Error (LME) associated with the training examples. Other alternatives for the loss term are yet to be explored for SSVMs. We formulate a new SSVM with Linear Summed Error (LSE) loss term and propose efficient algorithms to train the new SSVM formulation using primal cutting-plane method and sequential dual coordinate descent method. Numerical experiments on benchmark datasets demonstrate that the sequential dual coordinate descent method is faster than the cutting-plane method and reaches the steady-state generalization performance faster. It is thus a useful alternative for training SSVMs when linear summed error is used.
Resumo:
Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.
Resumo:
O reconhecimento de padões é uma área da inteligência computacional que apoia a resolução de problemas utilizando ferramentas computacionais. Dentre esses problemas podem ser citados o reconhecimento de faces, a identificação de impressões digitais e a autenticação de assinaturas. A autenticação de assinaturas de forma automática tem sua relevância pois está ligada ao reconhecimento de indivíduos e suas credenciais em sistemas complexos e a questões financeiras. Neste trabalho é apresentado um estudo dos parâmetros do Dynamic Time Warping, um algoritmo utilizado para alinhar duas assinaturas e medir a similaridade existente entre elas. Variando-se os principais parâmetros desse algoritmo, sobre uma faixa ampla de valores, foram obtidas as médias dos resultados de erros na classificação, e assim, estas médias foram avaliadas. Com base nas primeiras avaliação, foi identificada a necessidade de se calcular um desses parâmetros de forma dinâmica, o gap cost, a fim de ajustá-lo no uso de uma aplicação prática. Uma proposta para a realização deste cálculo é apresentada e também avaliada. É também proposta e avaliada uma maneira alternativa de representação dos atributos da assinatura, de forma a considerar sua curvatura em cada ponto adquirido no processo de aquisição, utilizando os vetores normais como forma de representação. As avaliações realizadas durante as diversas etapas do estudo consideraram o Equal Error Rate (EER) como indicação de qualidade e as técnicas propostas foram comparadas com técnicas já estabelecidas, obtendo uma média percentual de EER de 3,47%.
Resumo:
Esta pesquisa consiste na solução do problema inverso de transferência radiativa para um meio participante (emissor, absorvedor e/ou espalhador) homogêneo unidimensional em uma camada, usando-se a combinação de rede neural artificial (RNA) com técnicas de otimização. A saída da RNA, devidamente treinada, apresenta os valores das propriedades radiativas [ω, τ0, ρ1 e ρ2] que são otimizadas através das seguintes técnicas: Particle Collision Algorithm (PCA), Algoritmos Genéticos (AG), Greedy Randomized Adaptive Search Procedure (GRASP) e Busca Tabu (BT). Os dados usados no treinamento da RNA são sintéticos, gerados através do problema direto sem a introdução de ruído. Os resultados obtidos unicamente pela RNA, apresentam um erro médio percentual menor que 1,64%, seria satisfatório, todavia para o tratamento usando-se as quatro técnicas de otimização citadas anteriormente, os resultados tornaram-se ainda melhores com erros percentuais menores que 0,04%, especialmente quando a otimização é feita por AG.
Resumo:
C. Shang and Q. Shen. Aiding classification of gene expression data with feature selection: a comparative study. Computational Intelligence Research, 1(1):68-76.
Resumo:
R. Daly, Q. Shen and S. Aitken. Using ant colony optimisation in learning Bayesian network equivalence classes. Proceedings of the 2006 UK Workshop on Computational Intelligence, pages 111-118.