225 resultados para Compressors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By far the greater part of our understanding about stall and surge in axial compressors comes from work on low-speed laboratory machines. As a general rule, these machines do not model the compressibility effects present in high-speed compressors and therefore doubt has always existed about the application of low-speed results to high-speed machines. In recent years interest in active control has led to a number of studies of compressor stability in engine type compressors. This paper presents new data from an eight-stage fixed geometry engine compressor and compares this with low-speed laboratory data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behavior of casing grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading, and the near-casing flow field is then investigated using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. © 2011 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New experimental work is reported on the effects of water ingestion on the performance of an axial flow compressor. The background to the work is the effect that heavy rain has on an aeroengine compressor when operating in a "descent idle" mode, i.e., when the compressor is operating at part speed and when the aeromechanical effects of water ingestion are more important than the thermodynamic effects. Most of our existing knowledge in this field comes from whole engine tests. The current work provides the first known results from direct measurements on a stand-alone compressor. The influence of droplet size on path trajectory is considered both computationally and experimentally to show that most rain droplets will collide with the first row of rotor blades. The water on the blades is then centrifuged toward the casing where the normal airflow patterns in the vicinity of the rotor tips are disrupted. The result of this disruption is a reduction in compressor delivery pressure and an increase in the torque required to keep the compressor speed constant. Both effects reduce the efficiency of the machine. The behavior of the water in the blade rows is examined in detail, and simple models are proposed to explain the loss of pressure rise and the increase in torque. The measurements were obtained in a low speed compressor, making it possible to study the mechanical (increase in torque) and aerodynamic (reduction in pressure rise) effects of water ingestion without the added complication of thermodynamic effects. Copyright © 2008 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Casing grooves are known to increase the stable operating range of axial compressors. The mechanism by which this stability enhancement occurs is poorly understood. This paper develops a better understanding of the behaviour of grooves through analysis of new data. An experimental parametric study is used to demonstrate the effect of varying the axial location of a single casing groove on the stability and efficiency of the compressor. The effect that the groove has on rotor outflow blockage, blade loading and the near-casing flow field is then studied using both experimental and computational methods. It is found that the interaction of the groove with the flow field is different when the groove is positioned forward or aft relative to the blade. The interaction of the groove with the flow in the tip region in both of these positions is presented in detail. Finally, the implications of these findings for the design of casing grooves of different depths are discussed. Copyright © 2009 Rolls-Royce plc.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Operational uncertainties such as throttle excursions, varying inlet conditions and geometry changes lead to variability in compressor performance. In this work, the main operational uncertainties inherent in a transonic axial compressor are quantified to deter- mine their effect on performance. These uncertainties include the effects of inlet distortion, metal expansion, ow leakages and blade roughness. A 3D, validated RANS model of the compressor is utilized to simulate these uncertainties and quantify their effect on polytropic efficiency and pressure ratio. To propagate them, stochastic collocation and sparse pseudospectral approximations are used. We demonstrate that lower-order approximations are sufficient as these uncertainties are inherently linear. Results for epistemic uncertainties in the form of meshing methodologies are also presented. Finally, the uncertainties considered are ranked in order of their effect on efficiency loss. © 2012 AIAA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a framework that describes formally the underlying unsteady and conjugate heat transfer processes that are undergone in thermodynamic systems, along with results from its application to the characterization of thermodynamic losses due to irreversible heat transfer during reciprocating compression and expansion processes in a gas spring. Specifically, a heat transfer model is proposed that solves the one-dimensional unsteady heat conduction equation in the solid simultaneously with the first law in the gas phase, with an imposed heat transfer coefficient taken from suitable experiments in gas springs. Even at low volumetric compression ratios (of 2.5), notable effects of unsteady heat transfer to the solid walls are revealed, with thermally induced thermodynamic cycle (work) losses of up to 14% (relative to the work input/output in equivalent adiabatic and reversible compression/expansion processes) at intermediate Péclet numbers (i.e., normalized frequencies) when unfavorable solid and gas materials are selected, and closer to 10-12% for more common material choices. The contribution of the solid toward these values, through the conjugate variations attributed to the thickness of the cylinder wall, is about 8% and 2% points, respectively, showing a maximum at intermediate thicknesses. At higher compression ratios (of 6) a 19% worst-case loss is reported for common materials. These results suggest strongly that in designing high-efficiency reciprocating machines the full conjugate and unsteady problem must be considered and that the role of the solid in determining performance cannot, in general, be neglected. © 2014 Richard Mathie, Christos N. Markides, and Alexander J. White. Published with License by Taylor & Francis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the concept of engine downsizing becomes ever more integrated into automotive powertrain development strategies, so too does the pressure on turbocharger manufacturers to deliver improvements in map width and a reduction in the mass flow rate at which compressor surge occurs. A consequence of this development is the increasing importance of recirculating flows, both in the impeller inlet and outlet domains, on stage performance.
The current study seeks to evaluate the impact of the inclusion of impeller inlet recirculation on a meanline centrifugal compressor design tool. Using a combination of extensive test data, single passage CFD predictions, and 1-D analysis it is demonstrated how the addition of inlet recirculation modelling impacts upon stage performance close to the surge line. It is also demonstrated that, in its current configuration, the accuracy of the 1-D model prediction diminishes significantly with increasing blade tip speed.
Having ascertained that the existing model requires further work, an evaluation of the vaneless diffuser modelling method currently employed within the existing 1-D model is undertaken. The comparison of the predicted static pressure recovery coefficient with test data demonstrated the inherent inadequacies in the resulting prediction, in terms of both magnitude and variation with flow rate. A simplified alternative method based on an equivalent friction coefficient is also presented that, with further development, could provide a significantly improved stage performance prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides a novel meanline modeling approach for centrifugal compressors. All compressors analyzed are of the automotive turbocharger variety and have typical upstream geometry with no casing treatments or preswirl vanes. Past experience dictates that inducer recirculation is prevalent toward surge in designs with high inlet shroud to outlet radius ratios; such designs are found in turbocharger compressors due to the demand for operating range. The aim of the paper is to provide further understanding of impeller inducer flow paths when operating with significant inducer recirculation. Using three-dimensional (3D) computational fluid dynamics (CFD) and a single-passage model, the flow coefficient at which the recirculating flow begins to develop and the rate at which it grows are used to assess and correlate work and angular momentum delivered to the incoming flow. All numerical modeling has been fully validated using measurements taken from hot gas stand tests for all compressor stages. The new modeling approach links the inlet recirculating flow and the pressure ratio characteristic of the compressor. Typically for a fixed rotational speed, between choke and the onset of impeller inlet recirculation the pressure ratio rises gradually at a rate dominated by the aerodynamic losses. However, in modern automotive turbocharger compressors where operating range is paramount, the pressure ratio no longer changes significantly between the onset of recirculation and surge. Instead the pressure ratio remains relatively constant for reducing mass flow rates until surge occurs. Existing meanline modeling techniques predict that the pressure ratio continues to gradually rise toward surge, which when compared to test data is not accurate. A new meanline method is presented here which tackles this issue by modeling the direct effects of the recirculation. The result is a meanline model that better represents the actual fluid flow seen in the CFD results and more accurately predicts the pressure ratio and efficiency characteristics in the region of the compressor map affected by inlet recirculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the designers of modern automotive turbochargers strive to increase map width and lower the mass flow rate at which compressor surge occurs, the recirculating flows at the impeller inlet are becoming a much more relevant aerodynamic feature. Compressors with relatively large map widths tend to have very large recirculating regions at the inlet when operating close to surge; these regions greatly affect the expected performance of the compressor.

This study analyses the inlet recirculation region numerically using several modern automotive turbocharger centrifugal compressors. Using 3D Computational Fluid Dynamics (CFD) and a single passage model, the point at which the recirculating flow begins to develop and the rate at which it grows are investigated. All numerical modelling has been validated using measurements taken from hot gas stand tests for all compressor stages. The paper improves upon an existing correlation between the rate of development of the recirculating region and the compressor stage, which is supported by results from the numerical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-Zone modelling is used to assess three 1D impeller loss model collections. An automotive turbocharger centrifugal compressor is used for evaluation. The individual 1D losses are presented relative to each other at three tip speeds to provide a visual description of each author’s perception of the relative importance of each loss. The losses are compared with their resulting prediction of pressure ratio and efficiency, which is further compared with test data; upon comparison, a combination of the 1D loss collections is identified as providing the best performance prediction. 3D CFD simulations have also been carried out for the same geometry using a single passage model. A method of extracting 1D losses from CFD is described and utilised to draw further comparisons with the 1D losses. A 1D scroll volute model has been added to the single passage CFD results; good agreement with the test data is achieved. Short-comings in the existing 1D loss models are identified as a result of the comparisons with 3D CFD losses. Further comparisons are drawn between the predicted 1D data, 3D CFD simulation results, and the test data using a nondimensional method to highlight where the current errors exist in the 1D prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several one-dimensional design methods have been used to predict the off-design performance of three modern centrifugal compressors for automotive turbocharging. The three methods used are single-zone, two-zone, and a more recent statistical method. The predicted results from each method are compared against empirical data taken from standard hot gas stand tests for each turbocharger. Each of the automotive turbochargers considered in this study have notably different geometries and are of varying application. Due to the non-adiabatic test conditions, the empirical data has been corrected for the effect of heat transfer to ensure comparability with the 1D models. Each method is evaluated for usability and accuracy in both pressure ratio and efficiency prediction. The paper presents an insight into the limitations of each of these models when applied to one-dimensional automotive turbocharger design, and proposes that a corrected single-zone modelling approach has the greatest potential for further development, whilst the statistical method could be immediately introduced to a design process where design variations are limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After the development of a new single-zone meanline modelling technique, benchmarking of the technique and the modelling methods used during its development are presented. The new meanline model had been developed using the results of three automotive turbocharger centrifugal compressors, and single passage CFD models based on their geometry.

The target of the current study was to test the new meanline modelling method on two new centrifugal compressor stages, again from the automotive turbocharger variety. Furthermore the single passage CFD modelling method used in the previous study would be again employed here and also benchmarked.

The benchmarking was twofold; firstly test the overall performance prediction accuracy of the single-zone meanline model. Secondly, test the detailed performance estimation of the CFD model using detailed interstage static pressure tappings.

The final component of this study exposed the weaknesses in the current modelling methods used (explicitly during this study). The non-axisymmetric flow field at the leading and trailing edges for the two compressors was measured and is presented here for the complete compressor map, highlighting the distortion relative to the tongue.