977 resultados para Compressed air
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Researches concerning cooling-lubrication optimization in grinding have been conducted to contribute to a more sustainable process. An alternative to flood coolant is minimum quantity lubrication (MQL), which spray oil droplets in a compressed air jet. However, problems related to wheel cleaning were reported, due to wheel loading by a mixture of chips and oil, resulting in worsening of surface quality. This work aims to evaluate the viability of Teflon and aluminum oxide for wheel cleaning, compared to MQL without cleaning and MQL with cleaning by compressed air, through the following output variables: surface roughness, roundness, wheel wear, grinding power and acoustic emission. Vickers microhardness measurements and optical microscopy were also carried out. The results showed that both materials were efficient in cleaning the wheel, compared to MQL without cleaning, but not as satisfactory as compressed air. Much work is to be done in order to select the right material for wheel cleaning.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The energy is considered one of the most important elements in the human´s life providing the survival as well as the well being. Nowadays, the technologies destined to generate power burn fossil fuels which pour gases (carbon dioxide among them) that contribute to the global warming phenomenon. Several research groups and universities have been studying different methods for generating power with low carbon dioxide emissions, including the possibility of burning zero-carbon fuels. In this text, it has been put attention to the Advanced Zero Emission Power Plants (AZEP) which separate the CO2 (from the gases involved in the power generation), compress it, dehydrate it and store it in appropriate reservoirs. The goal of this study was to find a possible solution to produce CO from CO2, activated by solar energy; the reaction between CO and steam generates a syngas comprised of H2 and CO2, which can be separated by chemical and/or physical processes. The text also contains a study concerning the compressed air energy storage power plant (CAES) and come up with its modification to C[CO2]ES. This power plant stores CO2 directing it to a reverse combustion process to produce CO which is headed to a syngas reactor to produce CO2 and H2. Hydrogen is separated and carried to the thermal cycle to generate power with low carbon emissions
Resumo:
The aim of this study was to verify through microtensile test the influence of time and concentration of surface conditioning with hydrofluoric acid and its interference in the adhesion of dual resin cement to porcelain.We used 32 bodies of glass-ceramic lithium disilicate system IPS e.max Press LT with dimensions of 6mm thick, 8 mm in length and 8 mm in length, which will be molded to obtain composite resin blocks corresponding to blocks ceramics. Ceramic and resin blocks were divided into 16 groups (n = 4) and numbered according to the concentration of hydrofluoric acid (2.5%, 5%, 7.5% and 10%) and conditioning time (20 seconds, 40 seconds, 1 minute and 2 minutes). The blocks were cleaned in ultrasonic apparatus with distilled water and dried with compressed air, subjected to acid etching and air-jet washed with water, dried with compressed air and received application of silane agent Monobond-S, followed by adhesive Excite ( Ivoclar Vivaden). Each ceramic block was bonded to the corresponding block of resin through the resin cement Multilink Automix. The specimens were cut to obtain nine micro samples for each set of ceramic-resin with 1 mm X 1 mm X 12 mm in length, which were submitted to microtensile test. The results were analyzed with descriptive statistics and analysis of variance with significance level of 5%, revealing that there were statistically significant (p = 0.000001 <0.05). From the Tukey test can be concluded that etching with hydrofluoric acid and 2.5% for 120 seconds gave the best bond strength, however, no statistical difference between the conditioning with the same acid in the concentration of 5.0% for 20 to 40 seconds
Resumo:
This work presents the objective of producing organic fertilizer from the waste generated at FCT/UNESP and its use in the growing sunflower. For this, there were collected wastes of pruning/weeding and organic waste from the canteen. It were made two types of treatments, one conventional and the other mechanized, using three mass ratios: ratio 1 (30% wastes of pruning/weeding (RP) + 70% organic waste (RC)), ratio 2 (50% RP + 50% RC) and ratio 3 (70% RP + 30% RC). The conventional system was done windrow with turning manual and the mechanized system was developed in reactors by injecting compressed air. The compounds produced were analyzed in terms of pH, organic matter, organic carbon, mineral residue, nitrogen, phosphorus and potassium, which could be compared to the values stipulated by the Instrução Normativa n° 25 de 23/07/2009 do Ministério da Agricultura, Pecuária e Abastecimento. The compounds produced were used on growing sunflowers in 14 different conditions for the systems manual and mechanized, totaling 26 treatments with the following proportions... (Complete abstract click electronic access below)
Resumo:
In this study was shown the historical uses of compressed air by humanity, the general scenario of its uses and the most important steps of a project to set up an industrial network of compressed air, from the selection of a suitable compressor to the design of a distribution network, discussing all the possibilities and their characteristics as well as the feasibility of them. A case study was conducted in a food company where was implemented an industrial compressed air network. Information was collected regarding the consumers points of compressed air, as well as the layout of the new facility, necessary for the development of the distribution system. Two methods were used, analytical and nomogram, which complemented each other to the definition of appropriated tubing, both financially and physically
Resumo:
Pós-graduação em Engenharia de Produção - FEG
Resumo:
It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i) physisorption and (ii) chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−¹, compared to chemisorption which ranges from 100 to 1000 kJ mol−¹. Furthermore, chemisorption only forms monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws; however, it can be influenced by hysteresis effects. In the present experiment, we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. Our observations from completely decanting one steel and two aluminium cylinders are in agreement with the pressure dependence of physisorption for CO₂, CH₄, and H₂O. The CO₂ results for both cylinder types are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, mole fraction changes due to adsorption on aluminium (< 0.05 and 0 ppm for CO₂ and H₂O) were significantly lower than on steel (< 0.41 ppm and about < 2.5 ppm, respectively). The CO₂ amount adsorbed (5.8 × 1019 CO₂ molecules) corresponds to about the fivefold monolayer adsorption, indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH₄ and for CO but require further attention since they were only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber, the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO₂, ranging from 0.0014 to 0.0184 ppm °C−¹ for steel cylinders and −0.0002 to −0.0003 ppm °C−¹ for aluminium cylinders. The reversed temperature dependence for aluminium cylinders points to significantly lower desorption energies than for steel cylinders and due to the small values, they might at least partly be influenced by temperature, permeation from/to sealing materials, and gas-consumption-induced pressure changes. Temperature coefficients for CH₄, CO, and H₂O adsorption were, within their error bands, insignificant. These results do indicate the need for careful selection and usage of gas cylinders for high-precision calibration purposes such as requested in trace gas applications.