922 resultados para Compositional data analysis-roots in geosciences
Resumo:
In some studies, the data are not measurements but comprise counts or frequencies of particular events. In such cases, an investigator may be interested in whether one specific event happens more frequently than another or whether an event occurs with a frequency predicted by a scientific model.
Resumo:
In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.
Resumo:
1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.
Resumo:
Multiple regression analysis is a complex statistical method with many potential uses. It has also become one of the most abused of all statistical procedures since anyone with a data base and suitable software can carry it out. An investigator should always have a clear hypothesis in mind before carrying out such a procedure and knowledge of the limitations of each aspect of the analysis. In addition, multiple regression is probably best used in an exploratory context, identifying variables that might profitably be examined by more detailed studies. Where there are many variables potentially influencing Y, they are likely to be intercorrelated and to account for relatively small amounts of the variance. Any analysis in which R squared is less than 50% should be suspect as probably not indicating the presence of significant variables. A further problem relates to sample size. It is often stated that the number of subjects or patients must be at least 5-10 times the number of variables included in the study.5 This advice should be taken only as a rough guide but it does indicate that the variables included should be selected with great care as inclusion of an obviously unimportant variable may have a significant impact on the sample size required.
Resumo:
PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.
Resumo:
The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.
Resumo:
We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to spectral mapping , a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.
Resumo:
In this paper we examine the problem of compositional data from a different startingpoint. Chemical compositional data, as used in provenance studies on archaeologicalmaterials, will be approached from the measurement theory. The results will show, in avery intuitive way that chemical data can only be treated by using the approachdeveloped for compositional data. It will be shown that compositional data analysis is aparticular case in projective geometry, when the projective coordinates are in thepositive orthant, and they have the properties of logarithmic interval metrics. Moreover,it will be shown that this approach can be extended to a very large number ofapplications, including shape analysis. This will be exemplified with a case study inarchitecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr)transformation to obtain the random vector y of dimension D. The factor model istheny = Λf + e (1)with the factors f of dimension k & D, the error term e, and the loadings matrix Λ.Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysismodel (1) can be written asCov(y) = ΛΛT + ψ (2)where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as theloadings matrix Λ are estimated from an estimation of Cov(y).Given observed clr transformed data Y as realizations of the random vectory. Outliers or deviations from the idealized model assumptions of factor analysiscan severely effect the parameter estimation. As a way out, robust estimation ofthe covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), seePison et al. (2003). Well known robust covariance estimators with good statisticalproperties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), relyon a full-rank data matrix Y which is not the case for clr transformed data (see,e.g., Aitchison, 1986).The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves thissingularity problem. The data matrix Y is transformed to a matrix Z by usingan orthonormal basis of lower dimension. Using the ilr transformed data, a robustcovariance matrix C(Z) can be estimated. The result can be back-transformed tothe clr space byC(Y ) = V C(Z)V Twhere the matrix V with orthonormal columns comes from the relation betweenthe clr and the ilr transformation. Now the parameters in the model (2) can beestimated (Basilevsky, 1994) and the results have a direct interpretation since thelinks to the original variables are still preserved.The above procedure will be applied to data from geochemistry. Our specialinterest is on comparing the results with those of Reimann et al. (2002) for the Kolaproject data
Resumo:
Modern methods of compositional data analysis are not well known in biomedical research.Moreover, there appear to be few mathematical and statistical researchersworking on compositional biomedical problems. Like the earth and environmental sciences,biomedicine has many problems in which the relevant scienti c information isencoded in the relative abundance of key species or categories. I introduce three problemsin cancer research in which analysis of compositions plays an important role. Theproblems involve 1) the classi cation of serum proteomic pro les for early detection oflung cancer, 2) inference of the relative amounts of di erent tissue types in a diagnostictumor biopsy, and 3) the subcellular localization of the BRCA1 protein, and it'srole in breast cancer patient prognosis. For each of these problems I outline a partialsolution. However, none of these problems is \solved". I attempt to identify areas inwhich additional statistical development is needed with the hope of encouraging morecompositional data analysts to become involved in biomedical research
Resumo:
Modern methods of compositional data analysis are not well known in biomedical research. Moreover, there appear to be few mathematical and statistical researchers working on compositional biomedical problems. Like the earth and environmental sciences, biomedicine has many problems in which the relevant scienti c information is encoded in the relative abundance of key species or categories. I introduce three problems in cancer research in which analysis of compositions plays an important role. The problems involve 1) the classi cation of serum proteomic pro les for early detection of lung cancer, 2) inference of the relative amounts of di erent tissue types in a diagnostic tumor biopsy, and 3) the subcellular localization of the BRCA1 protein, and it's role in breast cancer patient prognosis. For each of these problems I outline a partial solution. However, none of these problems is \solved". I attempt to identify areas in which additional statistical development is needed with the hope of encouraging more compositional data analysts to become involved in biomedical research
Resumo:
Isotopic data are currently becoming an important source of information regarding sources, evolution and mixing processes of water in hydrogeologic systems. However, it is not clear how to treat with statistics the geochemical data and the isotopic data together. We propose to introduce the isotopic information as new parts, and apply compositional data analysis with the resulting increased composition. Results are equivalent to downscale the classical isotopic delta variables, because they are already relative (as needed in the compositional framework) and isotopic variations are almost always very small. This methodology is illustrated and tested with the study of the Llobregat River Basin (Barcelona, NE Spain), where it is shown that, though very small, isotopic variations comp lement geochemical principal components, and help in the better identification of pollution sources
Resumo:
In this paper we examine the problem of compositional data from a different starting point. Chemical compositional data, as used in provenance studies on archaeological materials, will be approached from the measurement theory. The results will show, in a very intuitive way that chemical data can only be treated by using the approach developed for compositional data. It will be shown that compositional data analysis is a particular case in projective geometry, when the projective coordinates are in the positive orthant, and they have the properties of logarithmic interval metrics. Moreover, it will be shown that this approach can be extended to a very large number of applications, including shape analysis. This will be exemplified with a case study in architecture of Early Christian churches dated back to the 5th-7th centuries AD
Resumo:
Factor analysis as frequent technique for multivariate data inspection is widely used also for compositional data analysis. The usual way is to use a centered logratio (clr) transformation to obtain the random vector y of dimension D. The factor model is then y = Λf + e (1) with the factors f of dimension k < D, the error term e, and the loadings matrix Λ. Using the usual model assumptions (see, e.g., Basilevsky, 1994), the factor analysis model (1) can be written as Cov(y) = ΛΛT + ψ (2) where ψ = Cov(e) has a diagonal form. The diagonal elements of ψ as well as the loadings matrix Λ are estimated from an estimation of Cov(y). Given observed clr transformed data Y as realizations of the random vector y. Outliers or deviations from the idealized model assumptions of factor analysis can severely effect the parameter estimation. As a way out, robust estimation of the covariance matrix of Y will lead to robust estimates of Λ and ψ in (2), see Pison et al. (2003). Well known robust covariance estimators with good statistical properties, like the MCD or the S-estimators (see, e.g. Maronna et al., 2006), rely on a full-rank data matrix Y which is not the case for clr transformed data (see, e.g., Aitchison, 1986). The isometric logratio (ilr) transformation (Egozcue et al., 2003) solves this singularity problem. The data matrix Y is transformed to a matrix Z by using an orthonormal basis of lower dimension. Using the ilr transformed data, a robust covariance matrix C(Z) can be estimated. The result can be back-transformed to the clr space by C(Y ) = V C(Z)V T where the matrix V with orthonormal columns comes from the relation between the clr and the ilr transformation. Now the parameters in the model (2) can be estimated (Basilevsky, 1994) and the results have a direct interpretation since the links to the original variables are still preserved. The above procedure will be applied to data from geochemistry. Our special interest is on comparing the results with those of Reimann et al. (2002) for the Kola project data
Resumo:
The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel© and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel© rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel© under Microsoft Windows© is required torun the software.Kew words: Compositional data Analysis, Software