625 resultados para Compliant cannula


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a class of lightweight structures known as compliant shell mechanisms. These are novel reconfigurable solutions for advanced structures, such as morphing shells and deployable membranes. They have local, discrete corrugations, which articulate and deform to achieve dramatic changes in the overall shape of the shell. The unique kinematics are considered by highlighting examples and by performing analysis using established and novel concepts, and favourable predictions of shape compared with laboratory models are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of catenary steel-compliant-riser (SCR) systems has increased as hydrocarbon production has moved progressively farther offshore and into deeper waters. The issue of fatigue damage caused by cyclic interaction of a riser with the seabed has gained prominence with the widespread use of SCRs and with the lengthening of the spans. The problem involves a number of complex factors, including trench configuration, nonlinear soil stiffness, breakaway of the riser from the seafloor, and degradation of soil resistance during cyclic loading. This paper presents a soilinteraction model capable of modeling these complexities, using input parameters that can be obtained with reasonable expenditure. Model simulations for typical offshore soft-soil conditions indicate that the model is capable of realistic predictions of cyclic bending moments. The degradation of soil resistance has a major effect on cyclic bending moments, particularly when uplift motions at the riser touchdown point (TDP) are large. © 2008 Society of Petroleum Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional models of bipedal walking generally assume rigid body structures, while elastic material properties seem to play an essential role in nature. On the basis of a novel theoretical model of bipedal walking, this paper investigates a model of biped robot which makes use of minimum control and elastic passive joints inspired from the structures of biological systems. The model is evaluated in simulation and a physical robotic platform by analyzing the kinematics and ground reaction force. The experimental results show that, with a proper leg design of passive dynamics and elasticity, an attractor state of human-like walking gait patterns can be achieved through extremely simple control without sensory feedback. The detailed analysis also explains how the dynamic human-like gait can contribute to adaptive biped walking. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While underactuated robotic systems are capable of energy efficient and rapid dynamic behavior, we still do not fully understand how body dynamics can be actively used for adaptive behavior in complex unstructured environment. In particular, we can expect that the robotic systems could achieve high maneuverability by flexibly storing and releasing energy through the motor control of the physical interaction between the body and the environment. This paper presents a minimalistic optimization strategy of motor control policy for underactuated legged robotic systems. Based on a reinforcement learning algorithm, we propose an optimization scheme, with which the robot can exploit passive elasticity for hopping forward while maintaining the stability of locomotion process in the environment with a series of large changes of ground surface. We show a case study of a simple one-legged robot which consists of a servomotor and a passive elastic joint. The dynamics and learning performance of the robot model are tested in simulation, and then transferred the results to the real-world robot. ©2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive dynamics plays an important role in legged locomotion of the biological systems. The use of passive dynamics provides a number of advantages in legged locomotion such as energy efficiency, self-stabilization against disturbances, and generating gait patterns and behavioral diversity. Inspired from the theoretical and experimental studies in biomechanics, this paper presents a novel bipedal locomotion model for walking and running behavior which uses compliant legs. This model consists of three-segment legs, two servomotors, and four passive joints that are constrained by eight tension springs. The self-organization of two gait patterns (walking and running) is demonstrated in simulation and in a real-world robot. The analysis of joint kinematics and ground reaction force explains how a minimalistic control architecture can exploit the particular leg design for generating different gait patterns. Moreover, it is shown how the proposed model can be extended for controlling locomotion velocity and gait patterns with the simplest control architecture. © 2007 IEEE.