950 resultados para Complete Equipartite Graphs


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider the following problem: Forgiven graphs G and F(1),..., F(k), find a coloring of the edges of G with k colors such that G does not contain F; in color i. Rodl and Rucinski studied this problem for the random graph G,,, in the symmetric case when k is fixed and F(1) = ... = F(k) = F. They proved that such a coloring exists asymptotically almost surely (a.a.s.) provided that p <= bn(-beta) for some constants b = b(F,k) and beta = beta(F). This result is essentially best possible because for p >= Bn(-beta), where B = B(F, k) is a large constant, such an edge-coloring does not exist. Kohayakawa and Kreuter conjectured a threshold function n(-beta(F1,..., Fk)) for arbitrary F(1), ..., F(k). In this article we address the case when F(1),..., F(k) are cliques of different sizes and propose an algorithm that a.a.s. finds a valid k-edge-coloring of G(n,p) with p <= bn(-beta) for some constant b = b(F(1),..., F(k)), where beta = beta(F(1),..., F(k)) as conjectured. With a few exceptions, this algorithm also works in the general symmetric case. We also show that there exists a constant B = B(F,,..., Fk) such that for p >= Bn(-beta) the random graph G(n,p) a.a.s. does not have a valid k-edge-coloring provided the so-called KLR-conjecture holds. (C) 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 419-453, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let G be a graph on n vertices with maximum degree ?. We use the Lovasz local lemma to show the following two results about colourings ? of the edges of the complete graph Kn. If for each vertex v of Kn the colouring ? assigns each colour to at most (n - 2)/(22.4?2) edges emanating from v, then there is a copy of G in Kn which is properly edge-coloured by ?. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409433, 2003]. On the other hand, if ? assigns each colour to at most n/(51?2) edges of Kn, then there is a copy of G in Kn such that each edge of G receives a different colour from ?. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Szekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fernandez, Procacci, and Scoppola [preprint, arXiv:0910.1824]. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 425436, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the NP-complete problem Vertex Separation (VS) on Maximal Outerplanar Graphs (mops). We formulate and prove a “main theorem for mops”, a necessary and sufficient condition for the vertex separation of a mop being k. The main theorem reduces the vertex separation of mops to a special kind of stretchability, one that we call affixability, of submops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 05C35.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 05C50.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The graph Laplacian operator is widely studied in spectral graph theory largely due to its importance in modern data analysis. Recently, the Fourier transform and other time-frequency operators have been defined on graphs using Laplacian eigenvalues and eigenvectors. We extend these results and prove that the translation operator to the i’th node is invertible if and only if all eigenvectors are nonzero on the i’th node. Because of this dependency on the support of eigenvectors we study the characteristic set of Laplacian eigenvectors. We prove that the Fiedler vector of a planar graph cannot vanish on large neighborhoods and then explicitly construct a family of non-planar graphs that do exhibit this property. We then prove original results in modern analysis on graphs. We extend results on spectral graph wavelets to create vertex-dyanamic spectral graph wavelets whose support depends on both scale and translation parameters. We prove that Spielman’s Twice-Ramanujan graph sparsifying algorithm cannot outperform his conjectured optimal sparsification constant. Finally, we present numerical results on graph conditioning, in which edges of a graph are rescaled to best approximate the complete graph and reduce average commute time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we define the spectrum problem for packings (coverings) of G to be the problem of finding all graphs H such that a maximum G-packing (minimum G- covering) of the complete graph with the leave (excess) graph H exists. The set of achievable leave (excess) graphs in G-packings (G-coverings) of the complete graph is called the spectrum of leave (excess) graphs for G. Then, we consider this problem for trees with up to five edges. We will prove that for any tree T with up to five edges, if the leave graph in a maximum T-packing of the complete graph Kn has i edges, then the spectrum of leave graphs for T is the set of all simple graphs with i edges. In fact, for these T and i and H any simple graph with i edges, we will construct a maximum T-packing of Kn with the leave graph H. We will also show that for any tree T with k ≤ 5 edges, if the excess graph in a minimum T-covering of the complete graph Kn has i edges, then the spectrum of excess graphs for T is the set of all simple graphs and multigraphs with i edges, except for the case that T is a 5-star, for which the graph formed by four multiple edges is not achievable when n = 12.