944 resultados para Community road safety
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Dedicated short range communications (DSRC) has been regarded as one of the most promising technologies to provide robust communications for large scale vehicle networks. It is designed to support both road safety and commercial applications. Road safety applications will require reliable and timely wireless communications. However, as the medium access control (MAC) layer of DSRC is based on the IEEE 802.11 distributed coordination function (DCF), it is well known that the random channel access based MAC cannot provide guaranteed quality of services (QoS). It is very important to understand the quantitative performance of DSRC, in order to make better decisions on its adoption, control, adaptation, and improvement. In this paper, we propose an analytic model to evaluate the DSRC-based inter-vehicle communication. We investigate the impacts of the channel access parameters associated with the different services including arbitration inter-frame space (AIFS) and contention window (CW). Based on the proposed model, we analyze the successful message delivery ratio and channel service delay for broadcast messages. The proposed analytical model can provide a convenient tool to evaluate the inter-vehicle safety applications and analyze the suitability of DSRC for road safety applications.
Resumo:
Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.
Resumo:
Congestion control is critical for the provisioning of quality of services (QoS) over dedicated short range communications (DSRC) vehicle networks for road safety applications. In this paper we propose a congestion control method for DSRC vehicle networks at road intersection, with the aims of providing high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method a offline simulation based approach is used to find out the best possible configurations of message rate and MAC layer backoff exponent (BE) for a given number of vehicles equipped with DSRC radios. The identified best configurations are then used online by an roadside access point (AP) for system operation. Simulation results demonstrated that this adaptive method significantly outperforms the fixed control method under varying number of vehicles. The impact of estimation error on the number of vehicles in the network on system level performance is also investigated.
Resumo:
Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.
Resumo:
Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.
Resumo:
Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.
Resumo:
This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13 EU Member States and Norway, the indicator was used to rank the countries’ safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41).
Resumo:
In this paper we propose an adaptive power and message rate control method for safety applications at road intersections. The design objectives are to firstly provide guaranteed QoS support to both high priority emergency safety applications and low priority routine safety applications and secondly maximize channel utilization. We use an offline simulation based approach to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network with certain safety QoS requirements. The identified configurations are then used online by roadside access points (AP) adaptively according to estimated number of vehicles. Simulation results show that this adaptive method could provide required QoS support to safety applications and it significantly outperforms a fixed control method. © 2013 International Information Institute.
Resumo:
One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.
Resumo:
Road traffic injuries are a major health issue worldwide. There are many factors that can
affect the levels of road traffic collisions which in turn increase the levels of people killed or
seriously injured. When road traffic collisions occur, observed facts are recorded in relation
to the incident. These facts are recorded as variable observations, and for this study,
variables and indicators are defined almost equivalently. There can be hundreds of different
indicators for the various collisions, as different countries face different road situations. This
makes it difficult to perform a road safety assessment, which can be applied globally. The
goal of this study is to select the most appropriate indicators and create a composite
indicator as a function of these indicators, which can be used as summary values, allowing
ease of comparisons between the countries/regions that have undergone a road safety
assessment. The composite indicator will then be used to assess the current situation in
Northern Ireland and provide scores for ranking policing in terms of overall road safety on
their road networks.
Resumo:
Given the current economic situation of the Portuguese municipalities, it is necessary to identify the priority investments in order to achieve a more efficient financial management. The classification of the road network of the municipality according to the occurrence of traffic accidents is fundamental to set priorities for road interventions. This paper presents a model for road network classification based on traffic accidents integrated in a geographic information system. Its practical application was developed through a case study in the municipality of Barcelos. An equation was defined to obtain a road safety index through the combination of the following indicators: severity, property damage only and accident costs. In addition to the road network classification, the application of the model allows to analyze the spatial coverage of accidents in order to determine the centrality and dispersion of the locations with the highest incidence of road accidents. This analysis can be further refined according to the nature of the accidents namely in collision, runoff and pedestrian crashes.
Resumo:
The historically-reactive approach to identifying safety problems and mitigating them involves selecting black spots or hot spots by ranking locations based on crash frequency and severity. The approach focuses mainly on the corridor level without taking the exposure rate (vehicle miles traveled) and socio-demographics information of the study area, which are very important in the transportation planning process, into consideration. A larger study analysis unit at the Transportation Analysis Zone (TAZ) level or the network planning level should be used to address the needs of development of the community in the future and incorporate safety into the long-range transportation planning process. In this study, existing planning tools (such as the PLANSAFE models presented in NCHRP Report 546) were evaluated for forecasting safety in small and medium-sized communities, particularly as related to changes in socio-demographics characteristics, traffic demand, road network, and countermeasures. The research also evaluated the applicability of the Empirical Bayes (EB) method to network-level analysis. In addition, application of the United States Road Assessment Program (usRAP) protocols at the local urban road network level was investigated. This research evaluated the applicability of these three methods for the City of Ames, Iowa. The outcome of this research is a systematic process and framework for considering road safety issues explicitly in the small and medium-sized community transportation planning process and for quantifying the safety impacts of new developments and policy programs. More specifically, quantitative safety may be incorporated into the planning process, through effective visualization and increased awareness of safety issues (usRAP), the identification of high-risk locations with potential for improvement, (usRAP maps and EB), countermeasures for high-risk locations (EB before and after study and PLANSAFE), and socio-economic and demographic induced changes at the planning-level (PLANSAFE).