934 resultados para Common Fixed Point


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AMS subject classification: 65K10, 49M07, 90C25, 90C48.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 47H10; Secondary: 54H25.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to the study of convergence properties of distances between points and the existence and uniqueness of best proximity and fixed points of the so-called semicyclic impulsive self-mappings on the union of a number of nonempty subsets in metric spaces. The convergences of distances between consecutive iterated points are studied in metric spaces, while those associated with convergence to best proximity points are set in uniformly convex Banach spaces which are simultaneously complete metric spaces. The concept of semicyclic self-mappings generalizes the well-known one of cyclic ones in the sense that the iterated sequences built through such mappings are allowed to have images located in the same subset as their pre-image. The self-mappings under study might be in the most general case impulsive in the sense that they are composite mappings consisting of two self-mappings, and one of them is eventually discontinuous. Thus, the developed formalism can be applied to the study of stability of a class of impulsive differential equations and that of their discrete counterparts. Some application examples to impulsive differential equations are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 54H25, 47H10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is not clear what a system for evidence-based common knowledge should look like if common knowledge is treated as a greatest fixed point. This paper is a preliminary step towards such a system. We argue that the standard induction rule is not well suited to axiomatize evidence-based common knowledge. As an alternative, we study two different deductive systems for the logic of common knowledge. The first system makes use of an induction axiom whereas the second one is based on co-inductive proof theory. We show the soundness and completeness for both systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study transport across a point contact separating two line junctions in a nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, we show that the stable fixed point corresponds to a point contact that is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G(H) = 1/2e(2)/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G(H) = 5/2e(2)/h) and the fully disconnected case (G(H) = 0).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present some coincidence point theorems in the setting of quasi-metric spaces that can be applied to operators which not necessarily have the mixed monotone property. As a consequence, we particularize our results to the field of metric spaces, partially ordered metric spaces and G-metric spaces, obtaining some very recent results. Finally, we show how to use our main theorems to obtain coupled, tripled, quadrupled and multidimensional coincidence point results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new coupled fixed point theorem related to the Pata contraction for mappings having the mixed monotone property in partially ordered complete metric spaces is established. It is shown that the coupled fixed point can be unique under some extra suitable conditions involving mid point lower or upper bound properties. Also the corresponding convergence rate is estimated when the iterates of our function converge to its coupled fixed point.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper investigates some properties of cyclic fuzzy maps in metric spaces. The convergence of distances as well as that of sequences being generated as iterates defined by a class of contractive cyclic fuzzy mapping to fuzzy best proximity points of (non-necessarily intersecting adjacent subsets) of the cyclic disposal is studied. An extension is given for the case when the images of the points of a class of contractive cyclic fuzzy mappings restricted to a particular subset of the cyclic disposal are allowed to lie either in the same subset or in its next adjacent one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Power has become a key constraint in current nanoscale integrated circuit design due to the increasing demands for mobile computing and a low carbon economy. As an emerging technology, an inexact circuit design offers a promising approach to significantly reduce both dynamic and static power dissipation for error tolerant applications. Although fixed-point arithmetic circuits have been studied in terms of inexact computing, floating-point arithmetic circuits have not been fully considered although require more power. In this paper, the first inexact floating-point adder is designed and applied to high dynamic range (HDR) image processing. Inexact floating-point adders are proposed by approximately designing an exponent subtractor and mantissa adder. Related logic operations including normalization and rounding modules are also considered in terms of inexact computing. Two HDR images are processed using the proposed inexact floating-point adders to show the validity of the inexact design. HDR-VDP is used as a metric to measure the subjective results of the image addition. Significant improvements have been achieved in terms of area, delay and power consumption. Comparison results show that the proposed inexact floating-point adders can improve power consumption and the power-delay product by 29.98% and 39.60%, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le principe de contraction de Banach, qui garantit l'existence d'un point fixe d'une contraction d'un espace métrique complet à valeur dans lui-même, est certainement le plus connu des théorèmes de point fixe. Dans plusieurs situations concrètes, nous sommes cependant amenés à considérer une contraction qui n'est définie que sur un sous-ensemble de cet espace. Afin de garantir l'existence d'un point fixe, nous verrons que d'autres hypothèses sont évidemment nécessaires. Le théorème de Caristi, qui garantit l'existence d'un point fixe d'une fonction d'un espace métrique complet à valeur dans lui-même et respectant une condition particulière sur d(x,f(x)), a plus tard été généralisé aux fonctions multivoques. Nous énoncerons des théorèmes de point fixe pour des fonctions multivoques définies sur un sous-ensemble d'un espace métrique grâce, entre autres, à l'introduction de notions de fonctions entrantes. Cette piste de recherche s'inscrit dans les travaux très récents de mathématiciens français et polonais. Nous avons obtenu des généralisations aux espaces de Fréchet et aux espaces de jauge de quelques théorèmes, dont les théorèmes de Caristi et le principe variationnel d'Ekeland. Nous avons également généralisé des théorèmes de point fixe pour des fonctions qui sont définies sur un sous-ensemble d'un espace de Fréchet ou de jauge. Pour ce faire, nous avons eu recours à de nouveaux types de contractions; les contractions sur les espaces de Fréchet introduites par Cain et Nashed [CaNa] en 1971 et les contractions généralisées sur les espaces de jauge introduites par Frigon [Fr] en 2000.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most of the commercial and financial data are stored in decimal fonn. Recently, support for decimal arithmetic has received increased attention due to the growing importance in financial analysis, banking, tax calculation, currency conversion, insurance, telephone billing and accounting. Performing decimal arithmetic with systems that do not support decimal computations may give a result with representation error, conversion error, and/or rounding error. In this world of precision, such errors are no more tolerable. The errors can be eliminated and better accuracy can be achieved if decimal computations are done using Decimal Floating Point (DFP) units. But the floating-point arithmetic units in today's general-purpose microprocessors are based on the binary number system, and the decimal computations are done using binary arithmetic. Only few common decimal numbers can be exactly represented in Binary Floating Point (BF P). ln many; cases, the law requires that results generated from financial calculations performed on a computer should exactly match with manual calculations. Currently many applications involving fractional decimal data perform decimal computations either in software or with a combination of software and hardware. The performance can be dramatically improved by complete hardware DFP units and this leads to the design of processors that include DF P hardware.VLSI implementations using same modular building blocks can decrease system design and manufacturing cost. A multiplexer realization is a natural choice from the viewpoint of cost and speed.This thesis focuses on the design and synthesis of efficient decimal MAC (Multiply ACeumulate) architecture for high speed decimal processors based on IEEE Standard for Floating-point Arithmetic (IEEE 754-2008). The research goal is to design and synthesize deeimal'MAC architectures to achieve higher performance.Efficient design methods and architectures are developed for a high performance DFP MAC unit as part of this research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A continuous version of the hierarchical spherical model at dimension d=4 is investigated. Two limit distributions of the block spin variable X(gamma), normalized with exponents gamma = d + 2 and gamma=d at and above the critical temperature, are established. These results are proven by solving certain evolution equations corresponding to the renormalization group (RG) transformation of the O(N) hierarchical spin model of block size L(d) in the limit L down arrow 1 and N ->infinity. Starting far away from the stationary Gaussian fixed point the trajectories of these dynamical system pass through two different regimes with distinguishable crossover behavior. An interpretation of this trajectories is given by the geometric theory of functions which describe precisely the motion of the Lee-Yang zeroes. The large-N limit of RG transformation with L(d) fixed equal to 2, at the criticality, has recently been investigated in both weak and strong (coupling) regimes by Watanabe (J. Stat. Phys. 115:1669-1713, 2004) . Although our analysis deals only with N = infinity case, it complements various aspects of that work.