994 resultados para Color Patterns
Resumo:
On a geological time scale the conditions on earth are very variable and biological patterns (for example the distributions of species) are very dynamic. Understanding large scale patterns of variation observed today thus requires a deep understanding of the historical factors that drove their evolution. In this thesis, we reevaluated the evolution and maintenance of a continental color cline observed in the European barn owl (Tyto alba) using population genetic tools. The colour cline spans from south-est Europe where most individual have pure white underparts to north and east Europe where most individuals have rufous-brown underparts. Our results globally showed that the old scenario, stipulating that the color cline evolved by secondary contact of two color morphs (white and rufous) that evolved in allopatry during the last ice age has to be revised. We collected samples of about 700 barn owls from the Western Palearctic to establish the first population genetic data set for this species. Individuals were genotyped at 22 microsatellites markers, at one mitochondrial gene, and at a candidate color gene. The color of each individuals was assessed and their sex determined by molecular methods. We first showed that the genetic variation in Western Europe is very limited compared to the heritable color variation. We found no evidences of different glacial lineages, and showed that selection must be involved in the maintenance of the color cline (chapter 1). Using computer simulations, we demonstrated that the post-glacial colonization of Europe occurred from the Iberian Peninsula and that the color cline could not have evolved by neutral demographic processes during this colonization (chapter 2). Finally we reevaluated the whole history of the establishment of the Western Palearctic variation of the barn owl (chapter 3): This study showed that all Western European barn owls descend from white barn owls phenotypes from the Middle East that colonized the Iberian Peninsula via North-Africa. Following the end of the last ice age (20'000 years ago), these white barn owls colonized Western Europe and under selection a novel rufous phenotype evolved (during or after the colonization). An important part of the color variation could be explained by a single mutation in the melanocortin-1-receptor (MC1R) gene that appeared during or after the colonization. The colonization of Europe reached until Greece, where the rufous birds encountered white ones (which reached Greece from the Middle East over the Bosporus) in a secondary contact zone. Our analyses show that white and rufous barn owls in Greece interbreed only to a limited extent. This suggests that barn owls are at the verge of becoming two species in Greece and demonstrates that European barn owls represent an incipient ring species around the Mediterranean. The revisited history of the establishment of the European barn owl color cline makes this model system remarkable for several aspects. It is a very clear example of strong local adaptation that can be achieved despite high gene flow (strong color and MC1R differentiation despite almost no neutral genetic differentiation). It also offers a wonderful model system to study the interactions between colonization processes and selection processes which have, for now, been remarkably understudied despite their potentially ubiquitous importance. Finally it represents a very interesting case in the speciation continuum and appeals for further studying the amount of gene flow that occurs between the color morphs in Greece. -- Sur l'échelle des temps géologiques, les conditions sur terre sont très variables et les patrons biologiques (telle que la distribution des espèces) sont très dynamiques. Si l'on veut comprendre des patrons que l'on peut observer à large échelle aujourd'hui, il est nécessaire de d'abord comprendre les facteurs historiques qui ont gouverné leur établissement. Dans cette thèse, nous allons réévaluer, grâce à des outils modernes de génétique des populations, l'évolution et la maintenance d'un cline de couleur continental observé chez l'effraie des clochers européenne (Tyto alba). Globalement, nos résultats montrent que le scenario accepté jusqu'à maintenant, qui stipule que le cline de couleur a évolué à partir du contact secondaire de deux morphes de couleur (blanches et rousses) ayant évolué en allopatrie durant les dernières glaciations, est à revoir. Afin de constituer le premier jeu de données de génétique des populations pour cette espèce, nous avons récolté des échantillons d'environ 700 effraies de l'ouest Paléarctique. Nous avons génotypé tous les individus à 22 loci microsatellites, sur un gène mitochondrial et sur un autre gène participant au déterminisme de la couleur. Nous avons aussi mesuré la couleur de tous les individus et déterminé leur sexe génétiquement. Nous avons tout d'abord pu montrer que la variation génétique neutre est négligeable en comparaison avec la variation héritable de couleur, qu'il n'existe qu'une seule lignée européenne et que de la sélection doit être impliquée dans le maintien du cline de couleur (chapitre 1). Grâce à des simulations informatiques, nous avons démontré que l'ensemble de l'Europe de l'ouest a été recolonisé depuis la Péninsule Ibérique après les dernières glaciations et que le cline de couleur ne peut pas avoir évolué par des processus neutre durant cette colonisation (chapitre 2). Finalement, nous avons réévalué l'ensemble de l'histoire postglaciaire de l'espèce dans l'ouest Paléarctique (chapitre 3): l'ensemble des effraies du Paléarctique descendent d'effraie claire du Moyen-Orient qui ont colonisé la péninsule ibérique en passant par l'Afrique du nord. Après la fin de la dernière glaciation (il y a 20'000 ans), ces effraies claires ont colonisé l'Europe de l'ouest et ont évolués par sélection le phénotype roux (durant ou après la colonisation). Une part importante de la variation de couleur peut être expliquée par une mutation sur le gène MC1R qui est apparue durant ou juste après la colonisation. Cette vague de colonisation s'est poursuivie jusqu'en Grèce où ces effraies rousses ont rencontré dans une zone de contact secondaire des effraies claires (qui sont remontées en Grèce depuis le Moyen-Orient via le Bosphore). Nos analyses montrent que le flux de gènes entre effraies blanches et rousses est limité en Grèce, ce qui suggère qu'elles sont en passe de former deux espèces et ce qui montre que les effraies constituent un exemple naissant de spéciation en anneaux autour de la Méditerranée. L'histoire revisitée des effraies des clochers de l'ouest Paléarctique en fait un système modèle remarquable pour plusieurs aspects. C'est un exemple très claire de forte adaptation locale maintenue malgré un fort flux de gènes (différenciation forte de couleur et sur le gène MC1R malgré presque aucune structure neutre). Il offre également un très bon système pour étudier l'interaction entre colonisation et sélection, un thème ayant été remarquablement peu étudié malgré son importance. Et il offre finalement un cas très intéressant dans le « continuum de spéciation » et il serait très intéressant d'étudier plus en détail l'importance du flux de gènes entre les morphes de couleur en Grèce.
Resumo:
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts
Resumo:
We investigated the association of eye color with the dominant-subordinate relationship in the fish Nile tilapia, Oreochromis niloticus. Eye color pattern was also examined in relation to the intensity of attacks. We paired 20 size-matched fish (intruder: 73.69 ± 11.49 g; resident: 75.42 ± 8.83 g) and evaluated eye color and fights. These fish were isolated in individual aquaria for 10 days and then their eye color was measured 5 min before pairing (basal values). Twenty minutes after pairing, eye color and fights were quantified for 10 min. Clear establishment of social hierarchy was observed in 7 of 10 pairs of fish. Number of attacks ranged from 1 to 168 among pairs. The quartile was calculated for these data and the pairs were then divided into two classes: low-attack (1 to 111 attacks - 2 lower quartiles) or high-attack (112 to 168 attacks - 2 higher quartiles). Dominance decreased the eye-darkening patterns of the fish after pairing, while subordinance increased darkening compared to dominance. Subordinate fish in low-attack confrontations presented a darker eye compared to dominant fish and to the basal condition. We also observed a paler eye pattern in dominants that shared low-attack interactions after pairing compared to the subordinates and within the group. However, we found no differences in the darkening pattern between dominants and subordinates from the high-attack groups. We conclude that eye color is associated with social rank in this species. Moreover, the association between eye color and social rank in the low-attack pairs may function to reduce aggression.
Resumo:
Background: Some studies have proven that a conventional visual brain computer interface (BCI) based on overt attention cannot be used effectively when eye movement control is not possible. To solve this problem, a novel visual-based BCI system based on covert attention and feature attention has been proposed and was called the gaze-independent BCI. Color and shape difference between stimuli and backgrounds have generally been used in examples of gaze-independent BCIs. Recently, a new paradigm based on facial expression changes has been presented, and obtained high performance. However, some facial expressions were so similar that users couldn't tell them apart, especially when they were presented at the same position in a rapid serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is reduced. New Method: In this paper, we combined facial expressions and colors to optimize the stimuli presentation in the gaze-independent BCI. This optimized paradigm was called the colored dummy face pattern. It is suggested that different colors and facial expressions could help users to locate the target and evoke larger event-related potentials (ERPs). In order to evaluate the performance of this new paradigm, two other paradigms were presented, called the gray dummy face pattern and the colored ball pattern. Comparison with Existing Method(s): The key point that determined the value of the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli could obtain higher performance than gray faces or colored balls stimuli. Ten healthy participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our experiment. Online and offline results of four different paradigms were obtained and comparatively analyzed. Results: The results showed that the colored dummy face pattern could evoke higher P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the colored ball pattern. Online results showed that the colored dummy face pattern had a significant advantage in terms of classification accuracy (p < 0.05) and information transfer rate (p < 0.05) compared to the other two patterns. Conclusions: The stimuli used in the colored dummy face paradigm combined color and facial expressions. This had a significant advantage in terms of the evoked P300 and N400 amplitudes and resulted in high classification accuracies and information transfer rates. It was compared with colored ball and gray dummy face stimuli.
Resumo:
We investigated the association of eye color with the dominant-subordinate relationship in the fish Nile tilapia, Oreochromis niloticus. Eye color pattern was also examined in relation to the intensity of attacks. We paired 20 size-matched fish (intruder: 73.69 ± 11.49 g; resident: 75.42 ± 8.83 g) and evaluated eye color and fights. These fish were isolated in individual aquaria for 10 days and then their eye color was measured 5 min before pairing (basal values). Twenty minutes after pairing, eye color and fights were quantified for 10 min. Clear establishment of social hierarchy was observed in 7 of 10 pairs of fish. Number of attacks ranged from 1 to 168 among pairs. The quartile was calculated for these data and the pairs were then divided into two classes: low-attack (1 to 111 attacks - 2 lower quartiles) or high-attack (112 to 168 attacks - 2 higher quartiles). Dominance decreased the eye-darkening patterns of the fish after pairing, while subordinance increased darkening compared to dominance. Subordinate fish in low-attack confrontations presented a darker eye compared to dominant fish and to the basal condition. We also observed a paler eye pattern in dominants that shared low-attack interactions after pairing compared to the subordinates and within the group. However, we found no differences in the darkening pattern between dominants and subordinates from the high-attack groups. We conclude that eye color is associated with social rank in this species. Moreover, the association between eye color and social rank in the low-attack pairs may function to reduce aggression.
Resumo:
Plant phenology has gained importance in the context of global change research, stimulating the development of new technologies for phenological observation. Digital cameras have been successfully used as multi-channel imaging sensors, providing measures of leaf color change information (RGB channels), or leafing phenological changes in plants. We monitored leaf-changing patterns of a cerrado-savanna vegetation by taken daily digital images. We extract RGB channels from digital images and correlated with phenological changes. Our first goals were: (1) to test if the color change information is able to characterize the phenological pattern of a group of species; and (2) to test if individuals from the same functional group may be automatically identified using digital images. In this paper, we present a machine learning approach to detect phenological patterns in the digital images. Our preliminary results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; and (2) different plant species present a different behavior with respect to the color change information. Based on those results, we suggest that individuals from the same functional group might be identified using digital images, and introduce a new tool to help phenology experts in the species identification and location on-the-ground. ©2012 IEEE.
Resumo:
Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Communication contributes to mediate the interactions between plants and the animals that disperse their genes. As yet, seasonal patterns in plant-animal communication are unknown, even though many habitats display pronounced seasonality e.g. when leaves senescence. We thus hypothesized that the contrast between fruit displays and their background vary throughout the year in a seasonal habitat. If this variation is adaptive, we predicted higher contrasts between fruits and foliage during the fruiting season in a cerrado-savanna vegetation, southeastern Brazil. Based on a six-year data base of fruit ripening and a one-year data set of fruit biomass, we used reflectance measurements and contrast analysis to show that fruits with distinct colors differed in the beginning of ripening and the peak of fruit biomass. Black, and particularly red fruits, that have a high contrast against the leaf background, were highly seasonal, peaking in the wet season. Multicolored and yellow fruits were less seasonal, not limited to one season, with a bimodal pattern for yellow ones, represented by two peaks, one in each season. We further supported the hypothesis that seasonal changes in fruit contrasts can be adaptive because fruits contrasted more strongly against their own foliage in the wet season, when most fruits are ripe. Hence, the seasonal variation in fruit colors observed in the cerrado-savanna may be, at least partly, explicable as an adaptation to ensure high conspicuousness to seed dispersers. © 2013 The Authors.
Resumo:
Objectives. Latinos are the nation's largest minority group and will double in size by 2050. Their size coupled with the fact that Latinos do not constitute a separate race raises questions about Latinos' incorporation into the U. S. racial hierarchy. This article explores patterns of Latino racial identity formation, examining the determinants of racial identity. Methods. Using the 2006 Latino National Survey, I estimate multinomial logit and ordered probit models of identification choices. Results. Latino racial identity is strongly associated with several factors, including socioeconomic status, measures of perceived discrimination and commonality, and measures of acculturation/assimilation. Most Latinos have a broader, more complex understanding of race. Furthermore, some Latinos do believe that they occupy a unique position in the racial hierarchy. Conclusions. The results suggest that the color line W. E. DuBois argued has long divided our nation may eventually shift.
Resumo:
Low-cost, plastic-injected optics mix light from different color LED dies without a significant decrease in average brightness, simplifying luminaire design both optically and electronically. In solid-state lighting, high-flux and high-color rendering index (CRI) light engines may be achieved by arraying and mixing the light from different color dies or phosphors, or a combination of the two, in the LED package. However, these nonhomogeneous sources, when combined with luminaire optics, tend to produce patterns with undesirable artifacts such as spatial and angular nonuniformities and color separation.
Resumo:
The scope of the present paper is the derivation of a merit function which predicts the visual perception of LED spot lights. The color uniformity level Usl is described by a linear regression function of the spatial color distribution in the far field. Hereby, the function is derived from four basic functions. They describe the color uniformity of spot lights through different features. The result is a reliable prediction for the perceived color uniformity in spot lights. A human factor experiment was performed to evaluate the visual preferences for colors and patterns. A perceived rank order was derived from the subjects’ answers and compared with the four basic functions. The correlation between the perceived rank order and the basic functions was calculated resulting in the definition of the merit function Usl. The application of this function is shown by a comparison of visual evaluations and measurements of LED retrofit spot lamps. The results enable a prediction of color uniformity levels of simulations and measurements concerning the visual perception. The function provides a possibility to evaluate the far field of spot lights without individual subjective judgment. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Spotlighting is one illumination field where the application of light emitting diodes (LED) creates many advantages. Commonly, the system for spot lights consists of a LED light engine and collimating secondary optics. Through angular or spatial separated emitted light from the source and imaging optical elements, a non uniform far field appears with colored rings, dots or patterns. Many feasible combinations result in very different spatial color distributions. Several combinations of three multi-chip light sources and secondary optical elements like reflectors and TIR lenses with additional facets or scattering elements were analyzed mainly regarding the color uniformity. They are assessed by the merit function Usl which was derived from human factor experiments and describes the color uniformity based on the visual perception of humans. Furthermore, the optical systems are compared concerning efficiency, peak candela and aspect ratio. Both types of optics differ in the relation between the color uniformity level and other properties. A plain reflector with a slightly color mixing light source performs adequate. The results for the TIR lenses indicate that they need additional elements for good color mixing or blended light source. The most convenient system depends on the requirements of the application.
Resumo:
La iluminación con diodos emisores de luz (LED) está reemplazando cada vez en mayor medida a las fuentes de luz tradicionales. La iluminación LED ofrece ventajas en eficiencia, consumo de energía, diseño, tamaño y calidad de la luz. Durante más de 50 años, los investigadores han estado trabajando en mejoras LED. Su principal relevancia para la iluminación está aumentando rápidamente. Esta tesis se centra en un campo de aplicación importante, como son los focos. Se utilizan para enfocar la luz en áreas definidas, en objetos sobresalientes en condiciones profesionales. Esta iluminación de alto rendimiento requiere una calidad de luz definida, que incluya temperaturas ajustables de color correlacionadas (CCT), de alto índice de reproducción cromática (CRI), altas eficiencias, y colores vivos y brillantes. En el paquete LED varios chips de diferentes colores (rojo, azul, fósforo convertido) se combinan para cumplir con la distribución de energía espectral con alto CRI. Para colimar la luz en los puntos concretos deseados con un ángulo de emisión determinado, se utilizan blancos sintonizables y diversos colores de luz y ópticas secundarias. La combinación de una fuente LED de varios colores con elementos ópticos puede causar falta de homogeneidad cromática en la distribución espacial y angular de la luz, que debe resolverse en el diseño óptico. Sin embargo, no hay necesidad de uniformidad perfecta en el punto de luz debido al umbral en la percepción visual del ojo humano. Por lo tanto, se requiere una descripción matemática del nivel de uniformidad del color con respecto a la percepción visual. Esta tesis está organizada en siete capítulos. Después de un capítulo inicial que presenta la motivación que ha guiado la investigación de esta tesis, en el capítulo 2 se presentan los fundamentos científicos de la uniformidad del color en luces concentradas, como son: el espacio de color aplicado CIELAB, la percepción visual del color, los fundamentos de diseño de focos respecto a los motores de luz y ópticas no formadoras de imágenes, y los últimos avances en la evaluación de la uniformidad del color en el campo de los focos. El capítulo 3 desarrolla diferentes métodos para la descripción matemática de la distribución espacial del color en un área definida, como son la diferencia de color máxima, la desviación media del color, el gradiente de la distribución espacial de color, así como la suavidad radial y axial. Cada función se refiere a los diferentes factores que influyen en la visión, los cuales necesitan un tratamiento distinto que el de los datos que se tendrán en cuenta, además de funciones de ponderación que pre- y post-procesan los datos simulados o medidos para la reducción del ruido, la luminancia de corte, la aplicación de la ponderación de luminancia, la función de sensibilidad de contraste, y la función de distribución acumulativa. En el capítulo 4, se obtiene la función de mérito Usl para la estimación de la uniformidad del color percibida en focos. Se basó en los resultados de dos conjuntos de experimentos con factor humano realizados para evaluar la percepción visual de los sujetos de los patrones de focos típicos. El primer experimento con factor humano dio lugar al orden de importancia percibida de los focos. El orden de rango percibido se utilizó para correlacionar las descripciones matemáticas de las funciones básicas y la función ponderada sobre la distribución espacial del color, que condujo a la función Usl. El segundo experimento con factor humano probó la percepción de los focos bajo condiciones ambientales diversas, con el objetivo de proporcionar una escala absoluta para Usl, para poder así sustituir la opinión subjetiva personal de los individuos por una función de mérito estandarizada. La validación de la función Usl se presenta en relación con el alcance de la aplicación y condiciones, así como las limitaciones y restricciones que se realizan en el capítulo 5. Se compararon los datos medidos y simulados de varios sistemas ópticos. Se discuten los campos de aplicación , así como validaciones y restricciones de la función. El capítulo 6 presenta el diseño del sistema de focos y su optimización. Una evaluación muestra el análisis de sistemas basados en el reflector y la lente TIR. Los sistemas ópticos simulados se comparan en la uniformidad del color Usl, sensibilidad a las sombras coloreadas, eficiencia e intensidad luminosa máxima. Se ha comprobado que no hay un sistema único que obtenga los mejores resultados en todas las categorías, y que una excelente uniformidad de color se pudo alcanzar por la conjunción de dos sistemas diferentes. Finalmente, el capítulo 7 presenta el resumen de esta tesis y la perspectiva para investigar otros aspectos. ABSTRACT Illumination with light-emitting diodes (LED) is more and more replacing traditional light sources. They provide advantages in efficiency, energy consumption, design, size and light quality. For more than 50 years, researchers have been working on LED improvements. Their main relevance for illumination is rapidly increasing. This thesis is focused on one important field of application which are spotlights. They are used to focus light on defined areas, outstanding objects in professional conditions. This high performance illumination required a defined light quality including tunable correlated color temperatures (CCT), high color rendering index (CRI), high efficiencies and bright, vivid colors. Several differently colored chips (red, blue, phosphor converted) in the LED package are combined to meet spectral power distribution with high CRI, tunable white and several light colors and secondary optics are used to collimate the light into the desired narrow spots with defined angle of emission. The combination of multi-color LED source and optical elements may cause chromatic inhomogeneities in spatial and angular light distribution which needs to solved at the optical design. However, there is no need for perfect uniformity in the spot light due to threshold in visual perception of human eye. Therefore, a mathematical description of color uniformity level with regard to visual perception is required. This thesis is organized seven seven chapters. After an initial one presenting the motivation that has guided the research of this thesis, Chapter 2 introduces the scientific basics of color uniformity in spot lights including: the applied color space CIELAB, the visual color perception, the spotlight design fundamentals with regards to light engines and nonimaging optics, and the state of the art for the evaluation of color uniformity in the far field of spotlights. Chapter 3 develops different methods for mathematical description of spatial color distribution in a defined area, which are the maximum color difference, the average color deviation, the gradient of spatial color distribution as well as the radial and axial smoothness. Each function refers to different visual influencing factors, and they need different handling of data be taken into account, along with weighting functions which pre- and post-process the simulated or measured data for noise reduction, luminance cutoff, the implementation of luminance weighting, contrast sensitivity function, and cumulative distribution function. In chapter 4, the merit function Usl for the estimation of the perceived color uniformity in spotlights is derived. It was based on the results of two sets of human factor experiments performed to evaluate the visual perception of typical spotlight patterns by subjects. The first human factor experiment resulted in the perceived rank order of the spotlights. The perceived rank order was used to correlate the mathematical descriptions of basic functions and weighted function concerning the spatial color distribution, which lead to the Usl function. The second human factor experiment tested the perception of spotlights under varied environmental conditions, with to objective to provide an absolute scale for Usl, so the subjective personal opinion of individuals could be replaced by a standardized merit function. The validation of the Usl function is presented concerning the application range and conditions as well as limitations and restrictions in carried out in chapter 5. Measured and simulated data of various optical several systems were compared. Fields of applications are discussed as well as validations and restrictions of the function. Chapter 6 presents spotlight system design and their optimization. An evaluation shows the analysis of reflector-based and TIR lens systems. The simulated optical systems are compared in color uniformity Usl , sensitivity to colored shadows, efficiency, and peak luminous intensity. It has been found that no single system which performed best in all categories, and that excellent color uniformity could be reached by two different system assemblies. Finally, chapter 7 summarizes the conclusions of the present thesis and an outlook for further investigation topics.
Resumo:
The past 15 years have brought much progress in our understanding of several basic features of primate color vision. There has been particular success in cataloging the spectral properties of the cone photopigments found in retinas of a number of primate species and in elucidating the relationship between cone opsin genes and their photopigment products. Direct studies of color vision show that there are several modal patterns of color vision among groupings of primates: (i) Old World monkeys, apes, and humans all enjoy trichromatic color vision, although the former two groups do not seem prone to the polymorphic variations in color vision that are characteristic of people; (ii) most species of New World monkeys are highly polymorphic, with individual animals having any of several types of dichromatic or trichromatic color vision; (iii) less is known about color vision in prosimians, but evidence suggests that at least some diurnal species have dichromatic color vision; and (iv) some nocturnal primates may lack color vision completely. In many cases the photopigments and photopigment gene arrangements underlying these patterns have been revealed and, as a result, hints are emerging about the evolution of color vision among the primates.
Resumo:
A 3.9 kb DNA fragment of human osteocalcin promoter and 3.6 kb DNA fragment of the rat collagen type1a1 promoter linked with visually distinguishable GFP isomers, topaz and cyan, were used for multiplex analysis of osteoblast lineage progression. Three patterns of dual transgene, expression can be appreciated in primary bone cell cultures derived from the transgenic mice and by histology of their corresponding bones. Our data support the interpretation that strong pOBCol3.6GFPcyan alone is found in newly formed osteoblasts, while strong pOBCol3.6GFPcyan and hOC-GFPtpz are present in osteoblasts actively making a new matrix. Osteoblasts expressing strong hOC-GFPtpz and weak pOBCol3.6GF-Pcyan are also present and may or may not be producing mineralized matrix. This multiplex approach reveals the heterogeneity within the mature osteoblast population that cannot be appreciated by current histological methods. It should be useful to identify and isolate populations of cells within an osteoblast lineage as they progress through stages of differentiation.