894 resultados para Colon-cancer Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β-catenin pathway plays an important role in the progression of colon cancer as well as many other cancer types. Almost all colorectal tumors show an upregulation of β-catenin activity either through mutations in the β-catenin regulator APC or through mutations in β-catenin itself. Upregulation of β-catenin leads to the transcription of many target genes involved in tumorigenesis. NF-κB is a transcription factor which activates many target genes, including both anti-apoptotic and pro-apoptotic molecules. Recently, it has been shown that GSK-3β, a negative regulator of β-catenin, is involved in the activation of NF-κB. However, the mechanism of this regulation of NF-κB by GSK-3β is unclear. As GSK-3β inhibits β-catenin we hypothesized that β-catenin may be responsible for the regulation of NF-κB by GSK-3β; i.e. β-catenin may inhibit NF-κB activity. In this study we show that β-catenin physically interacts with NF-κB leading to the inhibition of NF-κB transcriptional and DNA-binding activities. We also show that in colon cancer cells with high β-catenin expression there is a suppressed NF-κB activity and depletion of β-catenin increases NF-κB activity. Similarly, in colon cancer cells that have a low level of β-catenin NF-κB activity is high and introduction of β-catenin reduces NF-κB activity. Importantly, we show that this suppression of NF-κB by β-catenin leads to a reduction of NF-κB target gene Fas expression. Also Fas-mediated apoptosis is reduced in β-catenin overexpressing cells, which can be reversed upon depletion of β-catenin. Introduction of the NF-κB subunit p65 can restore Fas expression indicating that the effect of β-catenin on Fas is through NF-κB. Furthermore, β-catenin expression was found to inversely correlate with Fas expression in human colon and breast primary tumor tissues. As Fas downregulation is important for tumors to evade immune surveillance, β-catenin inhibition of NF-κB and Fas downregulation likely plays and important role for colon cancer progression. Additionally, we found that phosphoinositide 3-kinase plays a role in the regulation of β-catenin inhibition of NF-κB through the disruption of the β-catenin/NF-κB complex. This study provides a link between two important signal transduction pathways as well as another mechanism of β-catenin oncogenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumors that metastasize do so to preferred target organs. To explain this apparent specificity, Paget, > 100 years ago, formulated his seed and soil hypothesis; i.e., the cells from a given tumor would "seed'' only favorable "soil'' offered by certain groups. The hypothesis implies that cancer cells must find a suitable "soil'' in a target organ--i.e., one that supports colonization--for metastasis to occur. We demonstrate in this report that ability of human colon cancer cells to colonize liver tissue governs whether a particular colon cancer is metastatic. In the model used in this study, human colon tumors are transplanted into the nude mouse colon as intact tissue blocks by surgical orthotopic implantation. These implanted tumors closely simulate the metastatic behavior of the original human patient tumor and are clearly metastatic or nonmetastatic to the liver. Both classes of tumors were equally invasive locally into tissues and blood vessels. However, the cells from each class of tumor behave very differently when directly injected into nude mouse livers. Only cells from metastasizing tumors are competent to colonize after direct intrahepatic injection. Also, tissue blocks from metastatic tumors af fixed directly to the liver resulted in colonization, whereas no colonization resulted from nonmetastatic tumor tissue blocks even though some growth occurred within the tissue block itself. Thus, local invasion (injection) and even adhesion to the metastatic target organ (blocks) are not sufficient for metastasis. The results suggest that the ability to colonize the liver is the governing step in the metastasis of human colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colorectal cancer is the second most common cause of cancer-related death in the United States. Recent studies showed that interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) are significantly upregulated in both the tumor and its microenvironment, and act as key regulators of proliferation, angiogenesis, and metastasis. Our previous study showed that IL-8 overexpression in colorectal cancer cells triggers the upregulation of the CXCR2-mediated proliferative pathway. The aim of this study was to investigate whether the CXCR2 antagonist, SCH-527123, inhibits colorectal cancer proliferation and if it can sensitize colorectal cancer cells to oxaliplatin both in vitro and in vivo. SCH-527123 showed concentration-dependent antiproliferative effects in HCT116, Caco2, and their respective IL-8-overexpressing variants colorectal cancer cell lines. Moreover, SCH-527123 was able to suppress CXCR2-mediated signal transduction as shown through decreased phosphorylation of the NF-κB/mitogen-activated protein kinase (MAPK)/AKT pathway. These findings corresponded with decreased cell migration and invasion, while increased apoptosis in colorectal cancer cell lines. In vivo results verified that SCH-527123 treatment decreased tumor growth and microvessel density when compared with vehicle-treated tumors. Importantly, these preclinical studies showed that the combination of SCH-527123 and oxaliplatin resulted in a greater decrease in cell proliferation, tumor growth, apoptosis, and angiogenesis that was superior to single-agent treatment. Taken together, these findings suggest that targeting CXCR2 may block tumor proliferation, migration, invasion, and angiogenesis. In addition, CXCR2 blockade may further sensitize colorectal cancer to oxaliplatin treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this regulation results in increased synthesis of TS and may lead to the development of cellular drug resistance to TS-directed anticancer agents. As a strategy to inhibit TS expression, antisense 2′-O-methyl RNA oligoribonucleotides (ORNs) were designed to directly target the 5′ upstream cis-acting regulatory element (nucleotides 80–109) of TS mRNA. A 30 nt ORN, HYB0432, inhibited TS expression in human colon cancer RKO cells in a dose-dependent manner but had no effect on the expression of β-actin, α-tubulin or topoisomerase I. TS expression was unaffected by treatment with control sense or mismatched ORNs. HYB0504, an 18 nt ORN targeting the same core sequence, also repressed expression of TS protein. However, further reduction in oligo size resulted in loss of antisense activity. Following HYB0432 treatment, TS protein levels were reduced by 60% within 6 h and were maximally reduced by 24 h. Expression of p53 protein was inversely related to that of TS, suggesting that p53 expression may be directly linked to intracellular levels of TS. Northern blot analysis demonstrated that TS mRNA was unaffected by HYB0432 treatment. The half-life of TS protein was unchanged after antisense treatment suggesting that the mechanism of action of antisense ORNs is mediated through a process of translational arrest. These findings demonstrate that an antisense ORN targeted at a critical cis-acting element on TS mRNA can specifically inhibit expression of TS protein in RKO cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The level of 67 kDa laminin receptor (67LR) expression on breast and colon tumor cell surfaces was previously shown to be correlated with the capacity of tumor cells to metastasize. In the present work we investigate the effects of progestins and estrogen on the expression of 67LR in two sublines of the T47D human breast cancer cells: weakly tumorigenic, poorly invasive parental T47D cells and a highly tumorigenic, more invasive T47Dco subclone. Inmmunoblotting with an affinity purified antibody directed against a synthetic peptide recognizes the 67LR in these cells. 67LR expression in the T47Dco subclone is 5,5-fold higher than in their parental T47D cells. Treatment of T47D cells with 1 nM of the synthetic progestin R5020 results in a 4-fold increase in 67LR protein expression. Estrogen also induced 67LR expression, but only by 1.5-fold. The progestin-stimulated expression of the 67LR correlates with a 4.3-fold increase in attachment of T47D cells to laminin. A monoclonal antibody, mAb 13, directed against β1 integrin, completely blocks the attachment of T47D cells to fibronectin, only partially inhibits the attachment of T47D cells to laminin, and appears not to affect the progestin-stimulated laminin attachment of T47D cells. A new antiprogestin, ZK 112.993, significantly inhibits both progestin-stimulated 67LR expression and the increased attachment to laminin. These results suggest a possible role for progestin in mediating one of the multiple events thought to be important in metastasis of steroid receptor positive human breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased activation of c-src seen in colorectal cancer is an indicator of a poor clinical prognosis, suggesting that identification of downstream effectors of c-src may lead to new avenues of therapy. Guanylyl cyclase C (GC-C) is a receptor for the gastrointestinal hormones guanylin and uroguanylin and the bacterial heat-stable enterotoxin. Though activation of GC-C by its ligands elevates intracellular cyclic GMP (cGMP) levels and inhibits cell proliferation, its persistent expression in colorectal carcinomas and occult metastases makes it a marker for malignancy. We show here that GC-C is a substrate for inhibitory phosphorylation by c-src, resulting in reduced ligand-mediated cGMP production. Consequently, active c-src in colonic cells can overcome GC-C-mediated control of the cell cycle. Furthermore, docking of the c-src SH2 domain to phosphorylated GC-C results in colocalization and further activation of c-src. We therefore propose a novel feed-forward mechanism of activation of c-src that is induced by cross talk between a receptor GC and a tyrosine kinase. Our findings have important implications in understanding the molecular mechanisms involved in the progression and treatment of colorectal cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aneuploidy is among the most obvious differences between normal and cancer cells. However, mechanisms contributing to development and maintenance of aneuploid cell growth are diverse and incompletely understood. Functional genomics analyses have shown that aneuploidy in cancer cells is correlated with diffuse gene expression signatures and that aneuploidy can arise by a variety of mechanisms, including cytokinesis failures, DNA endoreplication and possibly through polyploid intermediate states. Here, we used a novel cell spot microarray technique to identify genes with a loss-of-function effect inducing polyploidy and/or allowing maintenance of polyploid cell growth of breast cancer cells. Integrative genomics profiling of candidate genes highlighted GINS2 as a potential oncogene frequently overexpressed in clinical breast cancers as well as in several other cancer types. Multivariate analysis indicated GINS2 to be an independent prognostic factor for breast cancer outcome (p = 0.001). Suppression of GINS2 expression effectively inhibited breast cancer cell growth and induced polyploidy. In addition, protein level detection of nuclear GINS2 accurately distinguished actively proliferating cancer cells suggesting potential use as an operational biomarker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher Notch signaling is known to be associated with hematological and solid cancers. We developed a potential immunotherapeutic monoclonal antibody (MAb) specific for the Negative Regulatory Region of Notch1 (NRR). The MAb604.107 exhibited higher affinity for the ``Gain-offunction'' mutants of Notch1 NRR associated with T Acute lymphoblastic Leukemia (T-ALL). Modeling of the mutant NRR with 12 amino-acid insertion demonstrated ``opening'' resulting in exposure of the S2-cleavage site leading to activated Notch1 signaling. The MAb, at low concentrations (1-2 mu g/ml), inhibited elevated ligand-independent Notch1 signaling of NRR mutants, augmented effect of Thapsigargin, an inhibitor of mutant Notch1, but had no effect on the wild-type Notch1. The antibody decreased proliferation of the primary T-ALL cells and depleted leukemia initiating CD34/CD44 high population. At relatively high concentrations, (10-20 mu g/ml), the MAb affected Notch1 signaling in the breast and colon cancer cell lines. The Notch-high cells sorted from solid-tumor cell lines exhibited characteristics of cancer stem cells, which were inhibited by the MAb. The antibody also increased the sensitivity to Doxorubucinirubicin. Further, the MAb impeded the growth of xenografts from breast and colon cancer cells potentiated regression of the tumors along with Doxorubucin. Thus, this antibody is potential immunotherapeutic tool for different cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite studies demonstrating that inhibition of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) has significant chemotherapeutic benefits in vitro and in vivo, inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular side effects, limiting the clinical utility of these drugs. PGE2 signals through four different receptors (EP1–EP4) and targeting individual receptor(s) may avoid these side effects, while retaining significant anticancer benefits. Here, we show that targeted inhibition of the EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 receptor-specific antagonist, ONO-8713, effectively reduced the growth of established CT26 tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less effective in reducing tumor growth. This antitumor effect was associated with reduced Fas ligand expression and attenuated tumor-induced immune suppression. In particular, tumor infiltration by CD4+CD25+Foxp3+ regulatory T cells was decreased, whereas the cytotoxic activity of isolated splenocytes against CT26 cells was increased. F4/80+ macrophage infiltration was also decreased; however, there was no change in macrophage phenotype. These findings suggest that the EP1 receptor represents a potential target for the treatment of colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.