619 resultados para Collider
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to 7 x 10(-15) GeV-4 are obtained, providing a new window on extra dimensions and strongly interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.
Resumo:
The standard model (SM) of particle physics is a theory, describing three out of four fundamental forces. In this model the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the transformation between the mass and weak eigenstates of quarks. The matrix properties can be visualized as triangles in the complex plane. A precise measurement of all triangle parameters can be used to verify the validity of the SM. The least precisely measured parameter of the triangle is related to the CKM element |Vtd|, accessible through the mixing frequency (oscillation) of neutral B mesons, where mixing is the transition of a neutral meson into its anti-particle and vice versa. It is possible to calculate the CKM element |Vtd| and a related element |Vts| by measuring the mass differences Dmd (Dms ) between neutral Bd and bar{Bd} (Bs and bar{Bs}) meson mass eigenstates. This measurement is accomplished by tagging the initial and final state of decaying B mesons and determining their lifetime. Currently the Fermilab Tevatron Collider (providing pbar{p} collisions at sqrt{s}=1.96 TeV) is the only place, where Bs oscillations can be studied. The first selection of the "golden", fully hadronic decay mode Bs->Ds pi(phi pi)X at DØ is presented in this thesis. All data, taken between April 2002 and August 2007 with the DØ detector, corresponding to an integrated luminosity of int{L}dt=2.8/fb is used. The oscillation frequency Dms and the ratio |Vtd|/|Vts| are determined as Dms = (16.6 +0.5-0.4(stat) +0.4-0.3(sys)) 1/ps, |Vtd|/|Vts| = 0.213 +0.004-0.003(exp)pm 0.008(theor). These results are consistent with the standard model expectations and no evidence for new physics is observable.
Resumo:
Qualificazione dei fotomoltiplicatori che saranno installati nel sottorivelatore LUCID dell'esperimento ATLAS a LHC.
Resumo:
Bibliography: p. 42-44.
Resumo:
Bibliography: p. 106-107.
Resumo:
Cover title.
Resumo:
Dissertação apresentada à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Audiovisual e Multimédia.
Resumo:
Neste trabalho de disserta¸c˜ao, investigamos os efeitos nucleares em processos de produ¸c˜ao de quarkonium no Relativistic Heavy Ion Collider (RHIC) e no Large Hadron Collider (LHC). Para tanto, consideramos o Modelo de Evapora¸c˜ao de Cor (CEM), baseado em processos partˆonicos calculados mediante a QCD perturbativa e em intera¸c˜oes n˜ao perturbativas via troca de gl´uons suaves para a forma¸c˜ao do quarkonium. Supress˜ao de quarkonium ´e um dos sinais de forma¸c˜ao do assim chamado Plasma de Quarks e Gl´uons (QGP) em colis˜oes ultrarelativ´ısticas de ´ıons pesados. No entanto, a supress˜ao n˜ao ´e somente causada em colis˜oes n´ucleo-n´ucleo (AA) devido `a forma¸c˜ao do QGP. De fato, a supress˜ao de quarkonium tamb´em foi observada em colis˜oes pr´oton-n´ucleo (pA). A fim de separar os efeitos da mat´eria quente (devidos ao QGP) e fria (efeitos n˜ao devidos ao QGP), pode-se olhar primeiro para colis˜oes pA, onde somente efeitos de mat´eria fria desempenham um papel fundamental, e depois aplicar esses efeitos em colis˜oes AA, uma vez que parte da supress˜ao ´e devido a efeitos de mat´eria fria. No regime de altas energias, a produ¸c˜ao do quarkonium ´e fortemente dependente da distribui¸c˜ao de gl´uons nuclear, o que viabiliza uma oportunidade ´unica de estudar o comportamento de pequeno x dos gl´uons dentro do n´ucleo e, consequentemente, restringir os efeitos nucleares. Estudamos os processos nucleares utilizando distintas parametriza¸c˜oes para as distribui¸c˜oes partˆonicas nucleares. Calculamos a raz˜ao nuclear para processos pA e AA em fun¸c˜ao da vari´avel rapidez para a produ¸c˜ao de quarkonium, o que permite estimar os efeitos nucleares. Al´em disso, apresentamos uma compara¸c˜ao com os dados do RHIC para a produ¸c˜ao do m´eson J/Ψ em colis˜oes pA, demonstrando que a an´alise deste observ´avel ´e uma quest˜ao em aberto na literatura. Adicionalmente, estimamos a produ¸c˜ao de quarks pesados e quarkonium na etapa inicial e durante a fase termal de uma colis˜ao ultrarelativ´ıstica de ´ıons pesados. O objetivo deste estudo ´e estimar as distintas contribui¸c˜oes para a produ¸c˜ao e de alguns efeitos do meio nuclear.
Resumo:
ALICE (A Large Ion Collider Experiment) is an experiment at CERN (European Organization for Nuclear Research), where a heavy-ion detector is dedicated to exploit the unique physics potential of nucleus-nucleus interactions at LHC (Large Hadron Collider) energies. In a part of that project, 716 so-called type V4 modules were assembles in Detector Laboratory of Helsinki Institute of Physics during the years 2004 - 2006. Altogether over a million detector strips has made this project the most massive particle detector project in the science history of Finland. One ALICE SSD module consists of a double-sided silicon sensor, two hybrids containing 12 HAL25 front end readout chips and some passive components, such has resistors and capacitors. The components are connected together by TAB (Tape Automated Bonding) microcables. The components of the modules were tested in every assembly phase with comparable electrical tests to ensure the reliable functioning of the detectors and to plot the possible problems. The components were accepted or rejected by the limits confirmed by ALICE collaboration. This study is concentrating on the test results of framed chips, hybrids and modules. The total yield of the framed chips is 90.8%, hybrids 96.1% and modules 86.2%. The individual test results have been investigated in the light of the known error sources that appeared during the project. After solving the problems appearing during the learning-curve of the project, the material problems, such as defected chip cables and sensors, seemed to induce the most of the assembly rejections. The problems were typically seen in tests as too many individual channel failures. Instead, the bonding failures rarely caused the rejections of any component. One sensor type among three different sensor manufacturers has proven to have lower quality than the others. The sensors of this manufacturer are very noisy and their depletion voltage are usually outside of the specification given to the manufacturers. Reaching 95% assembling yield during the module production demonstrates that the assembly process has been highly successful.
Resumo:
According to a press release dated 9 March 2009, the two experiments CDF (Collider Detector at Fermilab) and DZero have announced the discovery of ‘single top quark’ events, which represent a spectacular discovery and confirmation of the standard model of elementary particle physics. The results of their findings are now available as preprints which have been submitted for publication in Physical Review Letters1,2.
Resumo:
By detecting leading protons produced in the Central Exclusive Diffractive process, p+p → p+X+p, one can measure the missing mass, and scan for possible new particle states such as the Higgs boson. This process augments - in a model independent way - the standard methods for new particle searches at the Large Hadron Collider (LHC) and will allow detailed analyses of the produced central system, such as the spin-parity properties of the Higgs boson. The exclusive central diffractive process makes possible precision studies of gluons at the LHC and complements the physics scenarios foreseen at the next e+e− linear collider. This thesis first presents the conclusions of the first systematic analysis of the expected precision measurement of the leading proton momentum and the accuracy of the reconstructed missing mass. In this initial analysis, the scattered protons are tracked along the LHC beam line and the uncertainties expected in beam transport and detection of the scattered leading protons are accounted for. The main focus of the thesis is in developing the necessary radiation hard precision detector technology for coping with the extremely demanding experimental environment of the LHC. This will be achieved by using a 3D silicon detector design, which in addition to the radiation hardness of up to 5×10^15 neutrons/cm2, offers properties such as a high signal-to- noise ratio, fast signal response to radiation and sensitivity close to the very edge of the detector. This work reports on the development of a novel semi-3D detector design that simplifies the 3D fabrication process, but conserves the necessary properties of the 3D detector design required in the LHC and in other imaging applications.