1000 resultados para Coastal Settlements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban settlements, with their role as economic and governance nerve centres, are rapidly expanding in size and in consumption of resources, and consequently have significant impacts on the environment. The transition to an ‘eco-city’ - an urban settlement that adopts the goals and principles in the urban metabolism model - needs to occur to meet the challenges posed by a multitude of pressures including population growth, climate change and resource depletion. Thus, the adoption and integration of ‘sustainable development’ into the management of urban growth is one of the most critical governance issues for urban settlements. A framework in which sustainable development can be achieved is through the lenses of the established theoretical concept of ‘urban metabolism’. The key facet of the proposed ‘Integrated Urban Metabolism Framework’ is the provision of a platform whereby different fields can appreciate, absorb and learn from other areas, to increase the understanding of where each and every one of the pieces fit together in order to create a larger, holistic approach to the currently stagnant problem of unsustainable development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Queensland's new State Planning Policy for Coastal Protection, released in March and approved in April 2011 as part of the Queensland Coastal Plan, stipulates that local governments prepare and implement adaptation strategies for built up areas projected to be subject to coastal hazards between present day and 2100. Urban localities within the delineated coastal high hazard zone (as determined by models incorporating a 0.8 meter rise in sea level and a 10% increase in the maximum cyclone activity) will be required to re-evaluate their plans to accommodate growth, revising land use plans to minimise impacts of anticipated erosion and flooding on developed areas and infrastructure. While implementation of such strategies would aid in avoidance or minimisation of risk exposure, communities are likely to face significant challenges in such implementation, especially as development in Queensland is so intensely focussed upon its coasts with these new policies directing development away from highly desirable waterfront land. This paper examines models of planning theory to understand how we plan when faced with technically complex problems towards formulation of a framework for evaluating and improving practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of the toxic cyanobacterium majuscula Lyngbya in the coastal waters of southeast Queensland have caused adverse impacts on both environmental health and human health, and on local economies such as fishing and tourism. A number of studies have confirmed that the main limiting nutrients (“nutrients of concern”) that contribute to these blooms area Fe, DOC, N, P and also pH. This study is conducted to establish the distribution of these parameters in a typical southeast Queensland coastal setting. The study maps the geochemistry of shallow groundwater in the mainland Pumicestone catchment with an emphasis on the nutrients of concern to understand how these nutrients relate to aquifer materials, landuse and anthropogenic activities. The results of the study form a GIS information layer which will be incorporated into a larger GIS model being produced by Queensland Department of Environment and Resource Management (DERM) to support landuse management to avoid/minimize blooms of Lyngbya in Moreton Bay, southeast Queensland, and other similar settings. A total of 38 boreholes were established in the mainland Pumicestone region and four sampling rounds of groundwater carried out in both dry and wet conditions. These groundwater samples were measured in the field for physico-chemical parameters, and in the laboratory analyses for the nutrients of concern, and other major and minor ions. Aquifer materials were confirmed using the Geological Survey of Queensland digital geology map, and geomaterials were assigned to seven categories which are A (sands), B (silts, sandy silts), C (estuarine mud, silts), D (humid soils), E (alluvium), F (sandstone) and G (other bedrock). The results of the water chemistry were examined by use of the software package AquaChem/AqQA, and divided into six groundwater groups, based on groundwater chemical types and location of boreholes. The type of aquifer material and location, and proximity to waterways was found to be important because they affected physico-chemical properties and concentrations of nutrients of concern and dissolved ions. The analytical results showed that iron concentrations of shallow groundwaters were high due to acid sulfate soils, and also mud and silt, but were lower in sand materials. DOC concentrations of these shallow groundwaters in the sand material were high probably due to rapid infiltration. In addition, DOC concentrations in some boreholes were high because they were installed in organic rich wetlands. The pH values of boreholes were from acidic to near neutral; some boreholes with pH values were low (< 4), showing acid sulfate soils in these boreholes. Concentrations of total nitrogen and total phosphorus of groundwaters were generally low, and the main causes of elevated concentrations of total nitrogen and total phosphorus are largely due to animal and human wastes and tend to be found in localized source areas. Comparison of the relative percentage of nitrogen species (NH3/NH4< Org-N, NO3-N and NO2-N) demonstrated that they could be related to sources such as animal waste, residential and agricultural fertilizers, forest and vegetation, mixed residents and farms, and variable setting and vegetation covers. Total concentrations of dissolved ions in sampling round 3 (dry period) were higher than those in sampling round 2 (wet period) due to both evaporation of groundwater in the dry period and the dilution of rainfall in the wet period. This showed that the highest concentrations of nutrients of concern were due to acid sulfate soils, aquifer materials, landuse and anthropogenic activities and were typically in aquifer materials of E (alluvium) and C (estuarine muds) and locations of Burpengary, Caboolture, and Glass Mountain catchments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated potential palaeoclimate proxies provided by rare earth element (REE) geochemistry in speleothems and in clay mineralogy of cave sediments. Speleothem and sediment samples were collected from a series of cave fill deposits that occurred with rich vertebrate fossil assemblages in and around Mount Etna National Park, Rockhampton (central coastal Queensland). The fossil deposits range from Plio- Pleistocene to Holocene in age (based on uranium/thorium dating) and appear to represent depositional environments ranging from enclosed rainforest to semi-arid grasslands. Therefore, the Mount Etna cave deposits offer the perfect opportunity to test new palaeoclimate tools as they include deposits that span a known significant climate shift on the basis of independent faunal data. The first section of this study investigates the REE distribution of the host limestone to provide baseline geochemistry for subsequent speleothem investigations. The Devonian Mount Etna Beds were found to be more complex than previous literature had documented. The studied limestone massif is overturned, highly recrystallised in parts and consists of numerous allochthonous blocks with different spatial orientations. Despite the complex geologic history of the Mount Etna Beds, Devonian seawater-like REE patterns were recovered in some parts of the limestone and baseline geochemistry was determined for the bulk limestone for comparison with speleothem REE patterns. The second part of the study focused on REE distribution in the karst system and the palaeoclimatic implications of such records. It was found that REEs have a high affinity for calcite surfaces and that REE distributions in speleothems vary between growth bands much more than along growth bands, thus providing a temporal record that may relate to environmental changes. The morphology of different speleothems (i.e., stalactites, stalagmites, and flowstones) has little bearing on REE distributions provided they are not contaminated with particulate fines. Thus, baseline knowledge developed in the study suggested that speleothems were basically comparable for assessing palaeoclimatically controlled variations in REE distributions. Speleothems from rainforest and semi-arid phases were compared and it was found that there are definable differences in REE distribution that can be attributed to climate. In particular during semiarid phases, total REE concentration decreased, LREE became more depleted, Y/Ho increased, La anomalies were more positive and Ce anomalies were more negative. This may reflect more soil development during rainforest phases and more organic particles and colloids, which are known to transport REEs, in karst waters. However, on a finer temporal scale (i.e. growth bands) within speleothems from the same climate regime, no difference was seen. It is suggested that this may be due to inadequate time for soil development changes on the time frames represented by differences in growth band density. The third part of the study was a reconnaissance investigation focused on mineralogy of clay cave sediments, illite/kaolinite ratios in particular, and the potential palaeoclimatic implications of such records. Although the sample distribution was not optimal, the preliminary results suggest that the illite/kaolinite ratio increased during cold and dry intervals, consistent with decreased chemical weathering during those times. The study provides a basic framework for future studies at differing latitudes to further constrain the parameters of the proxy. The identification of such a proxy recorded in cave sediment has broad implications as clay ratios could potentially provide a basic local climate proxy in the absence of fossil faunas and speleothem material. This study suggests that REEs distributed in speleothems may provide information about water throughput and soil formation, thus providing a potential palaeoclimate proxy. It highlights the importance of understanding the host limestone geochemistry and broadens the distribution and potential number of cave field sites as palaeoclimate information no longer relies solely on the presence of fossil faunas and or speleothems. However, additional research is required to better understand the temporal scales required for the proxies to be recognised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the abundance and distribution of neutrophilic, microaerophilic Fe(II)-oxidizing bacteria (FeOB) in aquatic habitats of a highly weathered, subtropical coastal catchment where Fe biogeochemistry is of environmental significance. Laboratory cultivation and microscopy indicated that stalked Gallionella and sheathed Leptothrix-like FeOB were present in microbial mats associated with a circumneutral-pH, groundwater seep and streambank surface sediment,whereas unicellular FeOB werewidespread in surface and subsurface waters, including a seep, shallow stream and estuary-adjacent groundwater. Direct Gallionella-specificPCR detected dominant bacterial members related to Sideroxydans paludicola (95% sequence identity, SI) and Gallionella capsiferriformans (96% SI) in the seep microbialmat. TGGE analysis indicated that themost common FeOB in water enrichment cultures were related to S. lithotrophicus (96% SI). The ubiquity of FeOB in Poona catchment aquatic habitats suggests bacterial Fe(II) oxidation is integral to catchment Fe biogeochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was part of an integrated project developed in response to concerns regarding current and future land practices affecting water quality within coastal catchments and adjacent marine environments. Two forested coastal catchments on the Fraser Coast, Australia, were chosen as examples of low-modification areas with similar geomorphological and land-use characteristics to many other coastal zones in southeast Queensland. For this component of the overall project, organic , physico-chemical (Eh, pH and DO), ionic (Fe2+, Fe3+), and isotopic (ä13CDIC, ä15NDIN ä34SSO4) data were used to characterise waters and identify sources and processes contributing to concentrations and form of dissolved Fe, C, N and S within the ground and surface waters of these coastal catchments. Three sites with elevated Fe concentrations are discussed in detail. These included a shallow pool with intermittent interaction with the surface water drainage system, a monitoring well within a semi-confined alluvial aquifer, and a monitoring well within the fresh/saline water mixing zone adjacent to an estuary. Conceptual models of processes occurring in these environments are presented. The primary factors influencing Fe transport were; microbial reduction of Fe3+ oxyhydroxides in groundwaters and in the hyporheic zone of surface drainage systems, organic input available for microbial reduction and Fe3+ complexation, bacterial activity for reduction and oxidation, iron curtain effects where saline/fresh water mixing occurs, and variation in redox conditions with depth in ground and surface water columns. Data indicated that groundwater seepage appears a more likely source of Fe to coastal waters (during periods of low rainfall) via tidal flux. The drainage system is ephemeral and contributes little discharge to marine waters. However, data collected during a high rainfall event indicated considerable Fe loads can be transported to the estuary mouth from the catchment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal areas are dynamic environments that are home to billions of people worldwide and provide areas of unique natural importance. As such, coastal change is of considerable local and global interest, not only within the geological realm, but also in terms of socioeconomic and biodiversity impacts. An accurate understanding of how changes in relative sea level, geological processes and extreme events, such as storms and tsunamis, have interacted to shape and change the Earth’s coastlines over millennia is fundamental to future projections of coastal change. On the basis of this, researchers in these, and various other aspects of coastal change were brought together in late 2010 at the University of Hong Kong for the first meeting of International Geoscience Program Project 588 (IGCP588) e Preparing for Coastal Change. This special issue showcases some of the results presented at this meeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As evidenced with the 2011 floods the state of Queensland in Australia is quite vulnerable to this kind of disaster. Climate change will increase the frequency and magnitude of such events and will have a variety of other impacts. To deal with these governments at all levels need to be prepared and work together. Since most of the population of the state is located in the coastal areas and these areas are more vulnerable to the impacts of climate change this paper examines climate change adaptation efforts in coastal Queensland. The paper is part of a more comprehensive project which looks at the critical linkages between land use and transport planning in coastal Queensland, especially in light of increased frequencies of cyclonic activity and other impacts associated with climate change. The aim is improving coordination between local and state government in addressing land use and transport planning in coastal high hazard areas. By increasing the ability of local governments and state agencies to coordinate planning activities, we can help adapt to impacts of climate change. Towards that end, we will look at the ways that these groups currently interact, especially with regard to issues involving uncertainty related to climate change impacts. Through surveys and interviews of Queensland coastal local governments and state level planning agencies on how they coordinate their planning activities at different levels as well as how much they take into account the linkage of transportation and land use we aim to identify the weaknesses of the current planning system in responding to the challenges of climate change adaptation. The project will identify opportunities for improving the ways we plan and coordinate planning, and make recommendations to improve resilience in advance of disasters so as to help speed up recovery when they occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2011 floods illustrated once again Queensland’s vulnerability to flooding and similar disasters. Climate change will increase the frequency and magnitude of such events and will have a variety of other impacts. To deal with these impacts governments at all levels need to be prepared and work together. Like the rest of the nation most of the population of the state is located in the coastal areas and these areas are more vulnerable to the impacts of climate change. This paper examines climate change adaptation efforts in coastal Queensland. The aim is increasing local disaster resilience of people and property through fostering coordination between local and state government planning activities in coastal high hazard areas. By increasing the ability of local governments and state agencies to coordinate planning activities, we can help adapt to impacts of climate change. Towards that end, we will look at the ways that these groups currently interact, especially with regard to issues involving uncertainty related to climate change impacts. Through an examination of climate change related activities by Queensland’s coastal local governments and state level planning agencies and how they coordinate their planning activities at different levels we aim to identify the weaknesses of the current planning system in responding to the challenges of climate change adaptation and opportunities for improving the ways we plan and coordinate planning, and make recommendations to improve resilience in advance of disasters so as to help speed up recovery when they occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study presented here applies the highly parameterised semi-distributed U.S. Department of Agriculture Soil and Water Assessment Tool (SWAT) to an Australian subtropical catchment. SWAT has been applied to numerous catchments worldwide and is considered to be a useful tool that is under ongoing development with contributions coming from different research groups in different parts of the world. In a preliminary run the SWAT model application for the Elimbah Creek catchment has estimated water yield for the catchment and has quantified the different sources. For the modelling period of April 1999 to September 2009 the results show that the main sources of water in Elimbah Creek are total surface runoff and lateral flow (65%). Base-flow contributes 36% to the total runoff. On a seasonal basis modelling results show a shift in the source of water contributing to Elimbah Creek from surface runoff and lateral flow during intense summer storms to base-flow conditions during dry months. Further calibration and validation of these results will confirm that SWAT provides an alternative to Australian water balance models.