982 resultados para Coal-tar industry
Resumo:
Food is one of the main exogenous sources of genotoxic compounds. In heated food products, polycyclic aromatic hydrocarbons (PAHs) represent a priority group of genotoxic, mutagenic and/or carcinogenic chemical pollutants with adverse long-term health effects. People can be exposed to these compounds through different environments and via various routes: inhalation, ingestion of foods and water and even percutaneously. The presence of these compounds in food may be due to environmental contamination, to industrial handling and processing of foods and to oil processing and refining. The highest levels of these compounds are found in smoked foods, in seafood which is found in polluted waters, in grilled meats and, to a lesser extent, in vegetable fats and oils. Lower levels of PAHs are found in vegetables and in cereals and its products.
Resumo:
CIRO ROBERTO MORENO S. EN C.S – “Minas Peñitas”. Es una empresa en el sector minero energético. Este sector se ha caracterizado en Colombia como uno de los más importantes de inigualable crecimiento y con un gran potencial, ya que no solo le trae grandes beneficios a la economía del país, sino que es un sector distinguido por generar grandes niveles de empleo. De este modo CIRO ROBERTO MORENO S. EN C.S – “Minas Peñitas” tiene grandes oportunidades de crecimiento y perdurabilidad, pero debe tener en cuenta que tiene que estar preparada y en las mejores condiciones en todos los aspectos posibles. El propósito del presente trabajo de análisis de la empresa CIRO ROBERTO MORENO S. EN C.S – “Minas Peñitas” es de identificar la forma cómo se desarrollan todas las actividades de la empresa y así determinar el desempeño de estas, para identificar las fortalezas y debilidades presentes, para establecer un plan de mejoramiento en todas las actividades de la cadena de valor y por lo tanto en el plan de negocio de la compañía. La meta de este trabajo no solo fue analizar la situación de la empresa, sino también mostrar las condiciones de la minería de carbón y su comportamiento a nivel mundial y nacional, datos que no se tienen muy claros por parte de empresa y por lo tanto no se le ha dado la suficiente importancia a esta clase de información para beneficio de la misma; sin embargo de acuerdo a las mejoras propuestas en las falencias encontradas en los temas de comunicación y manejo de información en la empresa se espera que si CIRO ROBERTO MORENO S. EN C.S – “Minas Peñitas” considere aplicarlas de la mejor forma, lo cual le traerá grandes beneficios y cumplir con la visión establecida por la empresa.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Underground coal mines explosions generally arise from the inflammation of a methane/air mixture. This explosion can also generate a subsequent coal dust explosion. Traditionally such explosions have being fought eliminating one or several of the factors needed by the explosion to take place. Although several preventive measures are taken to prevent explosions, other measures should be considered to reduce the effects or even to extinguish the flame front. Unlike other protection methods that remove one or two of the explosion triangle elements, namely; the ignition source, the oxidizing agent and the fuel, explosion barriers removes all of them: reduces the quantity of coal in suspension, cools the flame front and the steam generated by vaporization removes the oxygen present in the flame. The present paper is essentially based on the comprehensive state-of–the-art of Protective Systems in underground coal mines, and particularly on the application of Explosion Barriers to improve safety level in Spanish coal mining industry. After an exhaustive study of series EN 14591 standards covering explosion prevention and protection in underground mines, authors have proven explosion barriers effectiveness in underground galleries by Full Scale Tests performed in Polish Barbara experimental mine, showing that the barriers can reduce the effects of methane and/or flammable coal dust explosions to a satisfactory safety level.
Resumo:
Activated carbon fibre monoliths were prepared by physical activation of carbon fibre monoliths derived from two kinds of pitch-based carbon fibre (CF) (carbon fibres from a coal tar pitch and carbon fibres derived from a petroleum pitch). The monoliths were conformed using a coal tar pitch binder. The carbon fibre monoliths and the activated carbon fibre monoliths were studied by scanning electron microscopy (SEM) and gas adsorption (i.e. N2 at 77 K and CO2 at 273 K). The results obtained reveal that monoliths perform a good activation process that produce a quite high development of microporosity (BET surface areas around 2600 m2/g and N2 micropore volume of 1.23 cm3/g). On the other hand, it is remarkable that the activation process used allow to easily control the degree of activation and hence to select the adsorption capacities of the activated carbon fibre monoliths.