966 resultados para Co(II) and Ni(II) pyrazolyl complexes
Resumo:
The physicochemical properties of 2,4-, and 3,4- dimethoxybenzoates of Cu(II), Co(II) and Nd(III) were studied and compared to observe the -OCH3 substituent positions in benzene ring on the character of complexes. The analysed compounds are crystalline hydrated or anhydrous salts with colours depending on the kind of central ions: blue for Cu(II), pink for Co(II) and violet for Nd(III) complexes. The carboxylate groups bind as monodentate, bidentate bridging or chelating and even tridentate ligands. Their thermal stabilities were studied in air at 293-1173K. When heated the hydrated complexes release the water molecules and form anhydrous compounds which are then decomposed to the oxides of respective metals. Their magnetic moment values were determined in the range of 76-303K. The results reveal the compounds of Nd(III) and Co(II) to be the high-spin and that of Cu(II) forms dimer. The various positions of -OCH3 groups in benzene ring influence some of physicochemical properties of analysed compounds.
Resumo:
Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Two new metal-organic based polymeric complexes, [Cu-4(O2CCH2CO2)(4)(L)].7H(2)O (1) and [CO2(O2CCH2CO2)(2)(L)].2H(2)O (2) [L = hexamethylenetetramine (urotropine)], have been synthesized and characterized by X-ray crystal structure determination and magnetic studies. Complex 1 is a 1D coordination polymer comprising a carboxylato, bridged Cu-4 moiety linked by a tetradentate bridging urotropine. Complex 2 is a 3D coordination polymer made of pseudo-two-dimensional layers of Co(II) ions linked by malonate anions in syn-anticonformation which are bridged by bidentate urotropine in trans fashion, Complex 1 crystallizes in the orthothombic system, space group Pmmn, with a = 14,80(2) Angstrom, b = 14.54(2) Angstrom, c = 7.325(10) Angstrom, beta = 90degrees, and Z = 4. Complex 2 crystallizes in the orthorhombic system, space group Imm2, a = 7.584(11) Angstrom, b = 15.80(2) Angstrom, c = 6.939(13) Angstrom, beta = 90.10degrees(1), and Z = 4. Variable temperature (300-2 K) magnetic behavior reveals the existence of ferro- and antiferromagnetic interactions in 1 and only antiferromagnetic interactions in 2. The best fitted parameters for complex 1 are J = 13.5 cm(-1), J = -18.1 cm(-1), and g = 2.14 considering only intra-Cu-4 interactions through carboxylate and urotropine pathways. In case of complex 2, the fit of the magnetic data considering intralayer interaction through carboxylate pathway as well as interlayer interaction via urotropine pathway gave no satisfactory result at this moment using any model known due to considerable orbital contribution of Co(II) ions to the magnetic moment and its complicated structure. Assuming isolated Co(II) ions (without any coupling, J = 0) the shape of the chi(M)T curve fits well with experimental data except at very low temperatures.
Resumo:
The 1:1 condensation of N-methyl-1,3-diaminopropane and N,N-diethyl-1,2-diminoethane with 2-acetylpyridine, respectively at high dilution gives the tridentate mono-condensed Schiff bases N-methyl-N'-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L-1) and N,N-diethyl-N'-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L-2). The tridentate ligands were allowed to react with methanol solutions of nickel(II) thiocyanate to prepare the complexes [Ni(L-1)(SCN)(2)(OH2) (1) and [{Ni(L-2)(SCN)}(2)] (2). Single crystal X-ray diffraction was used to confirm the structures of the complexes. The nickel(II) in complex 1 is bonded to three nitrogen donor atoms of the ligand L-1 in a mer orientation, together with two thiocyanates bonded through nitrogen and a water molecule, and it is the first Schiff base complex of nickel(II) containing both thiocyanate and coordinated water. The coordinated water initiates a hydrogen bonded 2D network. In complex 2, the nickel ion occupies a slightly distorted octahedral coordination sphere, being bonded to three nitrogen atoms from the ligand L-2, also in a mer orientation, and two thiocyanate anions through nitrogen. In contrast to 1, the sixth coordination site is occupied by a sulfur atom from a thiocyanate anion in an adjacent molecule, thus creating a centrosymmetric dimer. A variable temperature magnetic study of complex 2 indicates the simultaneous presence of zero-field splitting, weak intramolecular ferromagnetic coupling and intermolecular antiferromagnetic interactions between the nickel(II) centers.
Resumo:
This study describes the synthesis, IR, (1)H, and (13)C{(1)H} NMR spectroscopic as well the thermal characterization of the new palladium(II) pyrazolyl complexes [PdCl(2)(HmPz)(2)] 1, [PdBr(2)(HmPz)(2)] 2, [PdI(2)(HmPz)(2)] 3, [Pd(SCN)(2)(HmPz)(2)] 4 {HmPz = 4-methylpyrazole}. The residues of the thermal decomposition were identified as Pd(0) by X-ray powder diffraction. From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 1 > 2 > 4 a parts per thousand 3. The cytotoxic activities of the complexes and the ligand were investigated against two murine cancer cell lines: mammary adenocarcinoma (LM3) and lung adenocarcinoma (LP07) and compared to cisplatin under the same experimental conditions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this investigation is to study how Zr/Ti-PILC adsorbs metals. The physico-chemical proprieties of Zr/Ti-PILC have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x10-1 mmol g-1, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant.
Resumo:
Pós-graduação em Química - IQ
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
The very high antiproliferative activity of [Co(Cl)(H2O)(phendione)(2)][BF4] (phendione is 1,10-phenanthroline-5,6-dione) against three human tumor cell lines (half-maximal inhibitory concentration below 1 mu M) and its slight selectivity for the colorectal tumor cell line compared with healthy human fibroblasts led us to explore the mechanisms of action underlying this promising antitumor potential. As previously shown by our group, this complex induces cell cycle arrest in S phase and subsequent cell death by apoptosis and it also reduces the expression of proteins typically upregulated in tumors. In the present work, we demonstrate that [Co(Cl)(phendione)(2)(H2O)][BF4] (1) does not reduce the viability of nontumorigenic breast epithelial cells by more than 85 % at 1 mu M, (2) promotes the upregulation of proapoptotic Bax and cell-cycle-related p21, and (3) induces release of lactate dehydrogenase, which is partially reversed by ursodeoxycholic acid. DNA interaction studies were performed to uncover the genotoxicity of the complex and demonstrate that even though it displays K (b) (+/- A standard error of the mean) of (3.48 +/- A 0.03) x 10(5) M-1 and is able to produce double-strand breaks in a concentration-dependent manner, it does not exert any clastogenic effect ex vivo, ruling out DNA as a major cellular target for the complex. Steady-state and time-resolved fluorescence spectroscopy studies are indicative of a strong and specific interaction of the complex with human serum albumin, involving one binding site, at a distance of approximately 1.5 nm for the Trp214 indole side chain with log K (b) similar to 4.7, thus suggesting that this complex can be efficiently transported by albumin in the blood plasma.
Resumo:
This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate