892 resultados para Clinical trials data
Resumo:
OBJECTIVES Although the use of an adjudication committee (AC) for outcomes is recommended in randomized controlled trials, there are limited data on the process of adjudication. We therefore aimed to assess whether the reporting of the adjudication process in venous thromboembolism (VTE) trials meets existing quality standards and which characteristics of trials influence the use of an AC. STUDY DESIGN AND SETTING We systematically searched MEDLINE and the Cochrane Library from January 1, 2003, to June 1, 2012, for randomized controlled trials on VTE. We abstracted information about characteristics and quality of trials and reporting of adjudication processes. We used stepwise backward logistic regression model to identify trial characteristics independently associated with the use of an AC. RESULTS We included 161 trials. Of these, 68.9% (111 of 161) reported the use of an AC. Overall, 99.1% (110 of 111) of trials with an AC used independent or blinded ACs, 14.4% (16 of 111) reported how the adjudication decision was reached within the AC, and 4.5% (5 of 111) reported on whether the reliability of adjudication was assessed. In multivariate analyses, multicenter trials [odds ratio (OR), 8.6; 95% confidence interval (CI): 2.7, 27.8], use of a data safety-monitoring board (OR, 3.7; 95% CI: 1.2, 11.6), and VTE as the primary outcome (OR, 5.7; 95% CI: 1.7, 19.4) were associated with the use of an AC. Trials without random allocation concealment (OR, 0.3; 95% CI: 0.1, 0.8) and open-label trials (OR, 0.3; 95% CI: 0.1, 1.0) were less likely to report an AC. CONCLUSION Recommended processes of adjudication are underreported and lack standardization in VTE-related clinical trials. The use of an AC varies substantially by trial characteristics.
Resumo:
Historical information is always relevant for clinical trial design. Additionally, if incorporated in the analysis of a new trial, historical data allow to reduce the number of subjects. This decreases costs and trial duration, facilitates recruitment, and may be more ethical. Yet, under prior-data conflict, a too optimistic use of historical data may be inappropriate. We address this challenge by deriving a Bayesian meta-analytic-predictive prior from historical data, which is then combined with the new data. This prospective approach is equivalent to a meta-analytic-combined analysis of historical and new data if parameters are exchangeable across trials. The prospective Bayesian version requires a good approximation of the meta-analytic-predictive prior, which is not available analytically. We propose two- or three-component mixtures of standard priors, which allow for good approximations and, for the one-parameter exponential family, straightforward posterior calculations. Moreover, since one of the mixture components is usually vague, mixture priors will often be heavy-tailed and therefore robust. Further robustness and a more rapid reaction to prior-data conflicts can be achieved by adding an extra weakly-informative mixture component. Use of historical prior information is particularly attractive for adaptive trials, as the randomization ratio can then be changed in case of prior-data conflict. Both frequentist operating characteristics and posterior summaries for various data scenarios show that these designs have desirable properties. We illustrate the methodology for a phase II proof-of-concept trial with historical controls from four studies. Robust meta-analytic-predictive priors alleviate prior-data conflicts ' they should encourage better and more frequent use of historical data in clinical trials.
Resumo:
OBJECTIVES To investigate the frequency of interim analyses, stopping rules, and data safety and monitoring boards (DSMBs) in protocols of randomized controlled trials (RCTs); to examine these features across different reasons for trial discontinuation; and to identify discrepancies in reporting between protocols and publications. STUDY DESIGN AND SETTING We used data from a cohort of RCT protocols approved between 2000 and 2003 by six research ethics committees in Switzerland, Germany, and Canada. RESULTS Of 894 RCT protocols, 289 prespecified interim analyses (32.3%), 153 stopping rules (17.1%), and 257 DSMBs (28.7%). Overall, 249 of 894 RCTs (27.9%) were prematurely discontinued; mostly due to reasons such as poor recruitment, administrative reasons, or unexpected harm. Forty-six of 249 RCTs (18.4%) were discontinued due to early benefit or futility; of those, 37 (80.4%) were stopped outside a formal interim analysis or stopping rule. Of 515 published RCTs, there were discrepancies between protocols and publications for interim analyses (21.1%), stopping rules (14.4%), and DSMBs (19.6%). CONCLUSION Two-thirds of RCT protocols did not consider interim analyses, stopping rules, or DSMBs. Most RCTs discontinued for early benefit or futility were stopped without a prespecified mechanism. When assessing trial manuscripts, journals should require access to the protocol.
Resumo:
Standard methods for testing safety data are needed to ensure the safe conduct of clinical trials. In particular, objective rules for reliably identifying unsafe treatments need to be put into place to help protect patients from unnecessary harm. DMCs are uniquely qualified to evaluate accumulating unblinded data and make recommendations about the continuing safe conduct of a trial. However, it is the trial leadership who must make the tough ethical decision about stopping a trial, and they could benefit from objective statistical rules that help them judge the strength of evidence contained in the blinded data. We design early stopping rules for harm that act as continuous safety screens for randomized controlled clinical trials with blinded treatment information, which could be used by anyone, including trial investigators (and trial leadership). A Bayesian framework, with emphasis on the likelihood function, is used to allow for continuous monitoring without adjusting for multiple comparisons. Close collaboration between the statistician and the clinical investigators will be needed in order to design safety screens with good operating characteristics. Though the math underlying this procedure may be computationally intensive, implementation of the statistical rules will be easy and the continuous screening provided will give suitably early warning when real problems were to emerge. Trial investigators and trial leadership need these safety screens to help them to effectively monitor the ongoing safe conduct of clinical trials with blinded data.^
Resumo:
Interim clinical trial monitoring procedures were motivated by ethical and economic considerations. Classical Brownian motion (Bm) techniques for statistical monitoring of clinical trials were widely used. Conditional power argument and α-spending function based boundary crossing probabilities are popular statistical hypothesis testing procedures under the assumption of Brownian motion. However, it is not rare that the assumptions of Brownian motion are only partially met for trial data. Therefore, I used a more generalized form of stochastic process, called fractional Brownian motion (fBm), to model the test statistics. Fractional Brownian motion does not hold Markov property and future observations depend not only on the present observations but also on the past ones. In this dissertation, we simulated a wide range of fBm data, e.g., H = 0.5 (that is, classical Bm) vs. 0.5< H <1, with treatment effects vs. without treatment effects. Then the performance of conditional power and boundary-crossing based interim analyses were compared by assuming that the data follow Bm or fBm. Our simulation study suggested that the conditional power or boundaries under fBm assumptions are generally higher than those under Bm assumptions when H > 0.5 and also matches better with the empirical results. ^
Resumo:
The ascertainment and analysis of adverse reactions to investigational agents presents a significant challenge because of the infrequency of these events, their subjective nature and the low priority of safety evaluations in many clinical trials. A one year review of antibiotic trials published in medical journals demonstrates the lack of standards in identifying and reporting these potentially fatal conditions. This review also illustrates the low probability of observing and detecting rare events in typical clinical trials which include fewer than 300 subjects. Uniform standards for ascertainment and reporting are suggested which include operational definitions of study subjects. Meta-analysis of selected antibiotic trials using multivariate regression analysis indicates that meaningful conclusions may be drawn from data from multiple studies which are pooled in a scientifically rigorous manner. ^
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^
Resumo:
There are two practical challenges in the phase I clinical trial conduct: lack of transparency to physicians, and the late onset toxicity. In my dissertation, Bayesian approaches are used to address these two problems in clinical trial designs. The proposed simple optimal designs cast the dose finding problem as a decision making process for dose escalation and deescalation. The proposed designs minimize the incorrect decision error rate to find the maximum tolerated dose (MTD). For the late onset toxicity problem, a Bayesian adaptive dose-finding design for drug combination is proposed. The dose-toxicity relationship is modeled using the Finney model. The unobserved delayed toxicity outcomes are treated as missing data and Bayesian data augment is employed to handle the resulting missing data. Extensive simulation studies have been conducted to examine the operating characteristics of the proposed designs and demonstrated the designs' good performances in various practical scenarios.^
Resumo:
The Phase I clinical trial is considered the "first in human" study in medical research to examine the toxicity of a new agent. It determines the maximum tolerable dose (MTD) of a new agent, i.e., the highest dose in which toxicity is still acceptable. Several phase I clinical trial designs have been proposed in the past 30 years. The well known standard method, so called the 3+3 design, is widely accepted by clinicians since it is the easiest to implement and it does not need a statistical calculation. Continual reassessment method (CRM), a design uses Bayesian method, has been rising in popularity in the last two decades. Several variants of the CRM design have also been suggested in numerous statistical literatures. Rolling six is a new method introduced in pediatric oncology in 2008, which claims to shorten the trial duration as compared to the 3+3 design. The goal of the present research was to simulate clinical trials and compare these phase I clinical trial designs. Patient population was created by discrete event simulation (DES) method. The characteristics of the patients were generated by several distributions with the parameters derived from a historical phase I clinical trial data review. Patients were then selected and enrolled in clinical trials, each of which uses the 3+3 design, the rolling six, or the CRM design. Five scenarios of dose-toxicity relationship were used to compare the performance of the phase I clinical trial designs. One thousand trials were simulated per phase I clinical trial design per dose-toxicity scenario. The results showed the rolling six design was not superior to the 3+3 design in terms of trial duration. The time to trial completion was comparable between the rolling six and the 3+3 design. However, they both shorten the duration as compared to the two CRM designs. Both CRMs were superior to the 3+3 design and the rolling six in accuracy of MTD estimation. The 3+3 design and rolling six tended to assign more patients to undesired lower dose levels. The toxicities were slightly greater in the CRMs.^
Resumo:
Multi-center clinical trials are very common in the development of new drugs and devices. One concern in such trials, is the effect of individual investigational sites enrolling small numbers of patients on the overall result. Can the presence of small centers cause an ineffective treatment to appear effective when treatment-by-center interaction is not statistically significant?^ In this research, simulations are used to study the effect that centers enrolling few patients may have on the analysis of clinical trial data. A multi-center clinical trial with 20 sites is simulated to investigate the effect of a new treatment in comparison to a placebo treatment. Twelve of these 20 investigational sites are considered small, each enrolling less than four patients per treatment group. Three clinical trials are simulated with sample sizes of 100, 170 and 300. The simulated data is generated with various characteristics, one in which treatment should be considered effective and another where treatment is not effective. Qualitative interactions are also produced within the small sites to further investigate the effect of small centers under various conditions.^ Standard analysis of variance methods and the "sometimes-pool" testing procedure are applied to the simulated data. One model investigates treatment and center effect and treatment-by-center interaction. Another model investigates treatment effect alone. These analyses are used to determine the power to detect treatment-by-center interactions, and the probability of type I error.^ We find it is difficult to detect treatment-by-center interactions when only a few investigational sites enrolling a limited number of patients participate in the interaction. However, we find no increased risk of type I error in these situations. In a pooled analysis, when the treatment is not effective, the probability of finding a significant treatment effect in the absence of significant treatment-by-center interaction is well within standard limits of type I error. ^
Resumo:
An important objective of the INTEGRATE project1 is to build tools that support the efficient execution of post-genomic multi-centric clinical trials in breast cancer, which includes the automatic assessment of the eligibility of patients for available trials. The population suited to be enrolled in a trial is described by a set of free-text eligibility criteria that are both syntactically and semantically complex. At the same time, the assessment of the eligibility of a patient for a trial requires the (machineprocessable) understanding of the semantics of the eligibility criteria in order to further evaluate if the patient data available for example in the hospital EHR satisfies these criteria. This paper presents an analysis of the semantics of the clinical trial eligibility criteria based on relevant medical ontologies in the clinical research domain: SNOMED-CT, LOINC, MedDRA. We detect subsets of these widely-adopted ontologies that characterize the semantics of the eligibility criteria of trials in various clinical domains and compare these sets. Next, we evaluate the occurrence frequency of the concepts in the concrete case of breast cancer (which is our first application domain) in order to provide meaningful priorities for the task of binding/mapping these ontology concepts to the actual patient data. We further assess the effort required to extend our approach to new domains in terms of additional semantic mappings that need to be developed.
Resumo:
To support the efficient execution of post-genomic multi-centric clinical trials in breast cancer we propose a solution that streamlines the assessment of the eligibility of patients for available trials. The assessment of the eligibility of a patient for a trial requires evaluating whether each eligibility criterion is satisfied and is often a time consuming and manual task. The main focus in the literature has been on proposing different methods for modelling and formalizing the eligibility criteria. However the current adoption of these approaches in clinical care is limited. Less effort has been dedicated to the automatic matching of criteria to the patient data managed in clinical care. We address both aspects and propose a scalable, efficient and pragmatic patient screening solution enabling automatic evaluation of eligibility of patients for a relevant set of trials. This covers the flexible formalization of criteria and of other relevant trial metadata and the efficient management of these representations.
Resumo:
Funding The IPCRG provided funding for this research project as an UNLOCK Group study for which the funding was obtained through an unrestricted grant by Novartis AG, Basel, Switzerland. Novartis has no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. This study will include data from the Optimum Patient Care Research Database and is undertaken in collaboration with Optimum Patient Care and the Respiratory Effectiveness Group.
Resumo:
Purpose: To determine the inclusion of women and the sex-stratification of results in moxifloxacin Clinical Trials (CTs), and to establish whether these CTs considered issues that specifically affect women, such as pregnancy and use of hormonal therapies. Previous publications about women’s inclusion in CTs have not specifically studied therapeutic drugs. Although this type of drug is taken by men and women at a similar rate, adverse effects occur more frequently in the latter. Methods: We reviewed 158 published moxifloxacin trials on humans, retrieved from MedLine and the Cochrane Library (1998–2010), to determine whether they complied with the gender recommendations published by U.S. Food and Drug Administration Guideline. Results: Of a total of 80,417 subjects included in the moxifloxacin CTs, only 33.7% were women in phase I, in contrast to phase II, where women accounted for 45%, phase III, where they represented 38.3% and phase IV, where 51.3% were women. About 40.9% (n = 52) of trials were stratified by sex and 15.3% (n = 13) and 9% (n = 7) provided data by sex on efficacy and adverse effects, respectively. We found little information about the influence of issues that specifically affect women. Only 3 of the 59 journals that published the moxifloxacin CTs stated that authors should stratify their results by sex. Conclusions: Women are under-represented in the published moxifloxacin trials, and this trend is more marked in phase I, as they comprise a higher proportion in the other phases. Data by sex on efficacy and adverse effects are scarce in moxifloxacin trials. These facts, together with the lack of data on women-specific issues, suggest that the therapeutic drug moxifloxacin is only a partially evidence-based medicine.