885 resultados para Clinical stages of infection
Resumo:
There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007 (H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41 inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis, we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003, H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for detection before typical clinical symptoms are apparent.
Resumo:
Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.
Resumo:
Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.
Resumo:
Background: There is consensus in the literature that the end of life care for patients with chronic illness is suboptimal, but research on the specific needs of this population is limited. Aim: This study aimed to use a mixed methodology and case study approach to explore the palliative care needs of patients with a non-cancer diagnosis from the perspectives of the patient, their significant other and the clinical team responsible for their care. Patients (n 18) had a diagnosis of either end-stage heart failure, renal failure or respiratory disease. Methods: The Short Form 36 and Hospital and Anxiety and Depression Questionnaire were completed by all patients. Unstructured interviews were (n 35) were conducted separately with each patient and then their significant other. These were followed by a focus group discussion (n 18) with the multiprofessional clinical team. Quantitative data were analysed using simple descriptive statistics and simple descriptive statistics. All qualitative data were taped, transcribed and analysed using Colaizzi’s approach to qualitative analysis. Findings: Deteriorating health status was the central theme derived from this analysis. It led to decreased independence, social isolation and family burden. These problems were mitigated by the limited resources at the individual’s disposal and the availability of support from hospital and community services. Generally resources and support were perceived as lacking. All participants in this study expressed concerns regarding the patients’ future and some patients described feelings of depression or acceptance of the inevitability of imminent death. Conclusion: Patients dying from chronic illness in this study had many concerns and unmet clinical needs. Care teams were frustrated by the lack of resources available to them and admitted they were ill-equipped to provide for the individual’s holistic needs. Some clinicians described difficulty in talking openly with the patient and family regarding the palliative nature of their treatment. An earlier and more effective implementation of the palliative care approach is necessary if the needs of patients in the final stages of chronic illness are to be adequately addressed. Pa
Resumo:
Background. Invasive Candida infection among nonneutropenic, critically ill adults is a clinical problem that has received increasing attention in recent years. Poor performance of extant diagnostic modalities has promoted risk-based, preemptive prescribing in view of the poor outcomes associated with inadequate or delayed antifungal therapy; this risks unnecessary overtreatment. A rapid, reliable diagnostic test could have a substantial impact on therapeutic practice in this patient population.
Methods. Three TaqMan-based real-time polymerase chain reaction assays were developed that are capable of detecting the main medically important Candida species, categorized according to the likelihood of fluconazole susceptibility. Assay 1 detected Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida dubliniensis. Assays 2 and 3 detected Candida glabrata and Candida krusei, respectively. The clinical performance of these assays, applied to serum, was evaluated in a prospective trial of nonneutropenic adults in a single intensive care unit.
Results. In all, 527 specimens were obtained from 157 participants. All 3 assays were run in parallel for each specimen; they could be completed within 1 working day. Of these, 23 specimens were obtained from 23 participants categorized as having proven Candida infection at the time of sampling. If a single episode of Candida famata candidemia was excluded, the estimated clinical sensitivity, specificity, and positive and negative predictive values of the assays in this trial were 90.9%, 100%, 100% and 99.8%, respectively.
Conclusions. These data suggest that the described assays perform well in this population for enhancing the diagnosis of candidemia. The extent to which they may affect clinical outcomes, prescribing practice, and cost-effectiveness of care remains to be ascertained.
Resumo:
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Resumo:
To investigate the mode of action of Taurolin, an antimicrobial preparation, the growth inhibitory and bacteriocidal effects of taurolidine and taurultam solutions on Escherichia coli isolated from a diagnosed urinary tract infection were examined at 37-degrees-C. The inhibitory effects of taurolidine solutions were observed to be greater than those of taurultam solutions at comparative concentrations; however, the presence of sublethal concentrations of formaldehyde (methylene glycol) associated with taurolidine was sufficient to account for this. The bacteriocidal activity of taurolidine (2.0% w/v) was greater than that of taurultam (4.5% w/v). Both compounds produced biphasic death rates with dissimilar initial slopes, suggested to be due to the presence of formaldehyde in taurolidine solutions. These observations indicate that the growth inhibitory and bacteriocidal effects of Taurolin solutions are primarily due to taurultam, however, the presence of sublethal concentrations of formaldehyde is significant in the expression of this activity.
Resumo:
Removal of the spleen presents a lifelong risk of infection, in particular the syndrome of overwhelming postsplenectomy sepsis. Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitides are the most common organisms involved, but malaria, babesiosis and DF-2 also create a problem. Immunisation with pneumococcal vaccine, H. influenzae type b vaccine, influenza vaccine and, if in a high risk area, meningococcal vaccine is recommended. Lifelong phenoxymethylpenicillin 250mg twice daily is also advised, especially in high risk groups such as children and immunocompromised patients. If patients are unwilling to take medicine lifelong, or are unlikely to comply, an antibiotic supply should be made available at all times and administration should commence at the first sign of illness.
Resumo:
Cystic fibrosis (CF) is the most common inherited lethal disease in Caucasians which results in multiorgan dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR Delta F508 (Delta F508) mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1 beta. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type but not in Delta F508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-Delta F508 macrophages than in WT macrophages. An autophagosome is a compartment that engulfs nonfunctional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and Delta F508 macrophages. However, autophagy dysfunction is more pronounced in Delta F508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Resumo:
Pan-resistant Acinetobacter baumannii have prompted the search for therapeutic alternatives. We evaluate the efficacy of four cecropin A-melittin hybrid peptides (CA-M) in vivo. Toxicity was determined in mouse erythrocytes and in mice (lethal dose parameters were LD(0), LD(50), LD(100)). Protective dose 50 (PD(50)) was determined by inoculating groups of ten mice with the minimal lethal dose of A. baumannii (BMLD) and treating with doses of each CA-M from 0.5 mg/kg to LD(0). The activity of CA-Ms against A. baumannii was assessed in a peritoneal sepsis model. Mice were sacrificed at 0 and 1, 3, 5, and 7-h post-treatment. Spleen and peritoneal fluid bacterial concentrations were measured. CA(1-8)M(1-18) was the less haemolytic on mouse erythrocytes. LD(0) (mg/kg) was 32 for CA(1-8)M(1-18), CA(1-7)M(2-9), and Oct-CA(1-7)M(2-9), and 16 for CA(1-7)M(5-9). PD(50) was not achieved with non-toxic doses (= LD(0)). In the sepsis model, all CA-Ms were bacteriostatic in spleen, and decreased bacterial concentration (p <0.05) in peritoneal fluid, at 1-h post-treatment; at later times, bacterial regrowth was observed in peritoneal fluid. CA-Ms showed local short-term efficacy in the peritoneal sepsis model caused by pan-resistant Acinetobacter baumannii.
Resumo:
Lung infection by Burkholderia species, in particular B. cenocepacia, accelerates tissue damage and increase post-lung transplant mortality in cystic fibrosis patients. Host- microbes interplay largely depends on interactions between pathogen specific molecules and innate immune receptors such as the Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4/MD-2 LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4/MD-2 despite its lipid A having only five acyl chains. Further, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the pro- inflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling, combined with mutagenesis of TLR4-MD2 interactive surfaces, suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4/MD- 2 complex by penta-acylated lipid A, explaining the ability of hypoacylated B. cenocepacia LPS to promote pro- inflammatory responses associated to the severe pathogenicity of this opportunistic bacterium.
Resumo:
Despite the advances in prostate cancer diagnosis and treatment, current therapies are not curative in a significant proportion of patients. Gene-directed enzyme prodrug therapy (GDEPT), when combined with radiation therapy, could improve the outcome of treatment for prostate cancer, the second leading cause of cancer death in the western world. GDEPT involves the introduction of a therapeutic transgene, which can be targeted to the tumour cells. A prodrug is administered systemically and is converted to its toxic form only in those cells containing the transgene, resulting in cell kill. This review will discuss the clinical trials which have investigated the potential of GDEPT at various stages of prostate cancer progression. The advantages of using GDEPT in combination with radiotherapy will be examined, as well as some of the recent advances which enhance the potential utility of GDEPT.
Resumo:
Aberrant DNA methylation is one of the hallmarks of carcinogenesis and has been recognized in cancer cells for more than 20 years. The role of DNA methylation in malignant transformation of the prostate has been intensely studied, from its contribution to the early stages of tumour development to the advanced stages of androgen independence. The most significant advances have involved the discovery of numerous targets such as GSTP1, Ras-association domain family 1A (RASSF1A) and retinoic acid receptor beta2 (RARbeta2) that become inactivated through promoter hypermethylation during the course of disease initiation and progression. This has provided the basis for translational research into methylation biomarkers for early detection and prognosis of prostate cancer. Investigations into the causes of these methylation events have yielded little definitive data. Aberrant hypomethylation and how it impacts upon prostate cancer has been less well studied. Herein we discuss the major developments in the fields of prostate cancer and DNA methylation, and how this epigenetic modification can be harnessed to address some of the key issues impeding the successful clinical management of prostate cancer.
Resumo:
The primary care physician is frequently consulted in first line for infectious complications in organ transplant recipients. Many infections without signs of severity can nowadays be managed on an outpatient basis. However, a number of clinical situations specific to transplant recipients may require special attention and knowledge. In particular, the general practitioner must be aware of the potential interactions between immunosuppressive and antimicrobial therapies, the risk of renal dysfunction as a consequence of diarrhea or urinary tract infection, and the diagnostic of CMV disease as a cause of fever without obvious source occurring several months after transplantation. Collaboration with the transplantation specialists is recommended in order to assure an optimal management of these patients.
Resumo:
The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 degrees C to determine how infection by T bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures: (ii) increasing mortality rates at the highest temperature: (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 degrees C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.