980 resultados para Climate variation
Resumo:
Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36-55% of alpine species, 31-51% of subalpine species and 19-46% of montane species lose more than 80% of their suitable habitat by 2070-2100. While our high-resolution analyses consistently indicate marked levels of threat to cold-adapted mountain florae across Europe, they also reveal unequal distribution of this threat across the various mountain ranges. Impacts on florae from regions projected to undergo increased warming accompanied by decreased precipitation, such as the Pyrenees and the Eastern Austrian Alps, will likely be greater than on florae in regions where the increase in temperature is less pronounced and rainfall increases concomitantly, such as in the Norwegian Scandes and the Scottish Highlands. This suggests that change in precipitation, not only warming, plays an important role in determining the potential impacts of climate change on vegetation.
Resumo:
The observation of non-random phylogenetic distribution of traits in communities provides evidence for niche-based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic - and -diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic - and -diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.
Resumo:
In sharp contrast with birds and mammals, sex-determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex-determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500-km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern-boreal population, where male-specific alleles and heterozygote excesses (FIS = -0.418 in males, +0.025 in females) testify to a male-heterogametic system and lack of X-Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male-specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X-Y recombination, co-option of an alternative sex-chromosome pair, or a mixed sex-determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the 'sexual races' described in common frogs in the 1930s.
Resumo:
PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.
Resumo:
Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.
Resumo:
The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
Introduction: Mortality from cardiovascular disease (CVD) varies according to seasons in countries that are located far away from the equator, likely linked to concomitant seasonal variation in underlying CVD risk factors. We assessed temporal variation in CVD mortality in the Seychelles, a small island state situated near the equator and where the climate is virtually constant throughout the year. Seychelles is one of the few countries located near the equator where all deaths are registered. Methods: We recoded all deaths along broad causes, including CVD (n=5643), stroke (2112) and myocardial infarction (MI, 804). Stroke and MI were considered as the cause of death if the diagnosis appeared in any of the four fields for underlying causes of death in the death certificates. In view of the small size of the population, we pooled all deaths (n=13'163) between 1989 and 2010. Results: Mortality for all CVD, stroke and MI did not systematically vary according to month or season (chi square >0.05). A lack of variation was also observed within sex and age categories. Conclusion: The lack of seasonal variation in CVD mortality in a country located near the equator is consistent with the hypothesis that seasonal variation in CVD decreases along decreasing a country's latitude.
Resumo:
A multivariate morphometric study of the Greater white-toothed shrew (C. russula) throughout its Palearctic range was carried out to search for patterns of geographic variation within the species boundary. Burnaby's and multiple group principal component analysis allowed the adjustment of raw data with respect to within-sample allometric variation. Multivariate 'size-free' results show a stepped dine with the phenotypical trait reduction and shape change from the eastern to the western Maghreb. Pleistocene fossil mandibles proved to have low phenetic distances with eastern populations (Tunisia, east Algeria) and it is argued that their character set is the primitive condition. The ancestral Mid-Pleistocene shrews lived in a relatively more humid climate. Gee-climatic changes in the north African range during the Quaternary provoked phenetic variation of C. russula and, it can be argued, evolution of the modern western C.r. yebalensis. A historical process can thus be assumed as the main cause of this categorical variation, by segmentation of the species range due to gee-climatic events. Morphometric discontinuity within the C. russula Maghreb range is shown to be congruent with karyological and biochemical studies. Moroccan and Tunisian shrews differ, for example, in NFa chromosomes and electrophoretical traits. A stasipatric process should be invoked to explain categorical variation in the Maghreb range. Colonization and divergence of insular populations results in more or less differentiated geographic races. The populations of Ibiza and Pantelleria are close to the species threshold (Nei's D greater than or equal to 0.1). The process of speciation undergone by the Greater white-toothed shrew results in a complex pattern of geographic variation, including both allopatric and non-allopatric modes.
Resumo:
Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and averagelatitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northerndistributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts
Resumo:
Winter weather has a strong influence on Barn Owl (Tyto alba) breeding biology. Here, we analyzed the impacts of weather conditions on reproductive performance during the breeding season using data collected over 22 years in a Swiss Barn Owl population. Variations in rain and temperature during the breeding season played an important role in within-year variation in Barn Owl reproduction. An increase in rainfall during the period from 4 to 2 weeks preceding egg laying had a positive effect on clutch size. In contrast, fledgling body mass was negatively influenced by rainfall during the 24 h preceding the measurements. Finally, ambient temperature during the rearing period was positively associated with brood size at fledging. In conclusion, weather conditions during the breeding season place constraints on Barn Owl reproduction.
Resumo:
Here, we investigate the geographical constancy in the specificity level of the specialized lure-and-trap pollination antagonism involving the widespread European Arum maculatum and its associated Psychodid pollinators. Until now, studies concurred in demonstrating that one single insect species, Psychoda phalaenoides, efficiently cross-pollinated plants; researches were, however, performed locally in western Europe. In this study we characterize for the first time the flower visitors' composition at the scale of the distribution range of A. maculatum by intensively collecting plants and insects throughout the European continent. We further correlate local climatic characteristics with the community composition of visiting arthropods.Our results show that flowers are generally visited by P. phalaenoides females, but not over the whole distribution range of the plant. In some regions this fly species is less frequent or even absent and another species, Psycha grisescens, becomes the prevailing visitor. This variability is geographically structured and can be explained by climatic factors: the proportion of P. grisescens increases with higher annual precipitations and lower precipitations in the warmest trimester, two characteristics typical of the Mediterranean zone. Climate thus seems driving the specificity of this interaction, by potentially affecting the phenology of one or both interacting species, or even of volatile and heat production in the plant. This result therefore challenges the specificity of other presumably one-to-one interactions covering wide distribution ranges, and provides an example of the direct effect that the abiotic environment can have on the fate of plant-insect interactions.
Resumo:
Seasonal variations in ground temperature and moisture content influence the load carrying capacity of pavement subgrade layers. To improve pavement performance, pavement design guidelines require knowledge of environmental factors and subgrade stiffness relationships. As part of this study, in-ground instrumentation was installed in the pavement foundation layers of a newly constructed section along US Highway 20 near Fort Dodge, Iowa, to monitor the seasonal variations in temperature, frost depth, groundwater levels, and moisture regime. Dynamic cone penetrometer (DCP), nuclear gauge, and Clegg hammer tests were performed at 64 test points in a 6-ft x 6-ft grid pattern to characterize the subgrade stiffness properties (i.e., resilient modulus) prior to paving. The purpose of this paper is to present the field instrumentation results and the observed changes in soil properties due to seasonal environmental effects.
Resumo:
We present a new indicator taxa approach to the prediction of climate change effects on biodiversity at the national level in Switzerland. As indicators, we select a set of the most widely distributed species that account for 95% of geographical variation in sampled species richness of birds, butterflies, and vascular plants. Species data come from a national program designed to monitor spatial and temporal trends in species richness. We examine some opportunities and limitations in using these data. We develop ecological niche models for the species as functions of both climate and land cover variables. We project these models to the future using climate predictions that correspond to two IPCC 3rd assessment scenarios for the development of 'greenhouse' gas emissions. We find that models that are calibrated with Swiss national monitoring data perform well in 10-fold cross-validation, but can fail to capture the hot-dry end of environmental gradients that constrain some species distributions. Models for indicator species in all three higher taxa predict that climate change will result in turnover in species composition even where there is little net change in predicted species richness. Indicator species from high elevations lose most areas of suitable climate even under the relatively mild B2 scenario. We project some areas to increase in the number of species for which climate conditions are suitable early in the current century, but these areas become less suitable for a majority of species by the end of the century. Selection of indicator species based on rank prevalence results in a set of models that predict observed species richness better than a similar set of species selected based on high rank of model AUC values. An indicator species approach based on selected species that are relatively common may facilitate the use of national monitoring data for predicting climate change effects on the distribution of biodiversity.
Resumo:
The Paratethys evolved as a marginal sea during the Alpine-Himalayan orogeny in the Oligo-Miocene. Sediments from the northern Alpine Molasse Basin, the Vienna, and the Pannonian Basins located in the western and central part of the Paratethys thus provide unique information on regional changes in climate and oceanography during a period of active Alpine uplift Oxygen isotope compositions of well-preserved phosphatic fossils recovered from the sediments support deposition under sub-tropical to warm-temperate climate with water temperatures of 14 to 28 degrees C for the Miocene. delta(18)O values of fossil shark teeth are similar to those reported for other Miocene marine sections and, using the best available estimates of their biostratigraphic age, show a variation until the end of the Badenian similar to that reported for composite global record. The (87)Sr/(86)Sr isotope ratios of the fossils follow the global Miocene seawater trend, albeit with a much larger scatter. The deviations of (87)Sr/(86)Sr in the samples from the well-constrained seawater curve are interpreted as due to local input of terrestrially-derived Sr. Contribution of local sources is also reflected in the epsilon(Nd) values, consistent with input from ancient crystalline rocks (e.g., Bohemian Massif and/or Mesozoic sediments with epsilon(Nd) < -9. On the other hand, there is evidence for input from areas with Neogene volcanism as suggested by samples with elevated epsilon(Nd) values >-7. Excluding samples showing local influence on the water column, an average epsilon(Nd) value of -7.9 +/- 0.5 may be inferred for the Miocene Paratethys. This value is indistinguishable from the epsilon(Nd) value of the contemporaneous Indian Ocean, supporting a dominant role of this ocean in the Western and Central Paratethys. (C) 2008 Elsevier B.V. All rights reserved.