918 resultados para Cleaning machinery and appliances
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
This article reports country differences in the consumer’s most considered characteristics when choosing electrical appliances, including but not restricted to the energy efficiency aspect. A survey was performed to store customers from 7 countries: the United Kingdom; Germany; Portugal; Greece; Poland; Spain; Italy. Results showed consistency between countries in the top three characteristics considered: cost; quality; and a balance between price and quality. Differences were found for reported environmental attitudes and behaviours, purchase motives, and store employees evaluation. The results may support national policies and store level energy efficiency interventions. Specifically, they can provide input for store employee’s training, in persuading customers towards the purchase of energy efficient appliances.
Resumo:
The apparent simplicity of viruses hides the complexity of their interactions with their hosts. Viruses are masters at circumventing host defenses and manipulating the cellular environment for their own benefit. The replication of the largest known family of single-stranded DNA viruses, Geminiviridae, is impaired by DNA methylation and Arabidopsis mutants affected in cytosine methylation are hypersusceptible to geminivirus infection. This implies that plants might use methylation as a defense against geminiviruses and that the viral genome is a target for plant DNA methyltransferases. We have found a novel counter-defense strategy used by geminiviruses, that reduces the expression of the plant maintenance DNA methyltransferases, MET1 and CMT3, in both, locally and systemically infected tissues. Furthermore, we demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widely spread among different geminivirus species. Additionally, we identified Rep as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 downregulation. The presence of Rep, suppresses TGS of an Arabidopsis transgene and of host loci whose expression is strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for geminiviral replication, displays TGS suppressor activity through a mechanism distinct from the one thus far described for geminiviruses.
Resumo:
Mode of access: Internet.
Resumo:
Plant and machinery valuation is important to every company.s annual financial reporting. It is reported under the non-current assets section, and the valuers are generally employed to provide the up to date valuation of the non-current assets valuation such as property, plant and equipment that can make up to 80% of the total assets of a company. The valuation of plant and machinery is also important for other purposes such as securing loan facilities, sales, takeover, insurance and auction. The application of 2005 International Financial Reporting Standard (IFRS) has a subsequent impact on the financial sector, as a whole. The accountants have to choose between the Historical Cost approach and Market Value approach in determining the value of the client.s assets. In Malaysia, the implementation of IFRS has a domino effect on the financial system, especially for plant and machinery valuation for financial reporting. The comparison data for plant and machinery valuation is limited unlike land and building valuation. The question of Malaysian valuer.s ability to comply with the IFRS standard keeps rising every day, not just to the accountants, but also other related parties such as financial institutions, government agencies and the clients. This is happening because of different interpretations of premise of value for plant and machinery, as well as methods been used and differences in standards of reporting among the valuers conducting plant and machinery valuation. The root of the problem lies in the lack of practical guidelines governing plant and machinery valuation practices and different schools of thought among the valuers. Some follow the United Kingdom.s RICS guidelines, whilst some valuers are more comfortable with the United State.s USPAP rules, especially on the premise of value. This research is to investigate the international best practices of plant and machinery valuation and to establish the common valuation concept, awareness and application of valuation methodology and valuation process for plant and machinery valuation in Malaysia. This research uses a combination of the qualitative and quantitative research approach. In the qualitative approach, the content analyses were conducted from the international practices and current Malaysian implementation of plant and machinery valuation. A survey (quantitative approach) via questionnaire was implemented among the registered and probationary valuers in Malaysia to investigate their understanding and opinion relating to plant and machinery valuation based on the current practices. The significance of this research is the identification of international plant and machinery practices and the understanding of current practices of plant and machinery valuation in Malaysia. It is found that issues embedding plant and machinery valuation practices are limited numbers of resources available either from scholars or practitioner. This is supported by the general finding from the research survey that indicates that there are immediate needs for practical notes or guidelines to be developed and implemented to support the Malaysian valuers practising plant and machinery valuation. This move will lead to a better understanding of plant and machinery valuation, reducing discrepancies in valuation of plant and machinery and increased accuracy among practising valuers.
Resumo:
This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In such territories where food production is mostly scattered in several small / medium size or even domestic farms, a lot of heterogeneous residues are produced yearly, since farmers usually carry out different activities in their properties. The amount and composition of farm residues, therefore, widely change during year, according to the single production process periodically achieved. Coupling high efficiency micro-cogeneration energy units with easy handling biomass conversion equipments, suitable to treat different materials, would provide many important advantages to the farmers and to the community as well, so that the increase in feedstock flexibility of gasification units is nowadays seen as a further paramount step towards their wide spreading in rural areas and as a real necessity for their utilization at small scale. Two main research topics were thought to be of main concern at this purpose, and they were therefore discussed in this work: the investigation of fuels properties impact on gasification process development and the technical feasibility of small scale gasification units integration with cogeneration systems. According to these two main aspects, the present work was thus divided in two main parts. The first one is focused on the biomass gasification process, that was investigated in its theoretical aspects and then analytically modelled in order to simulate thermo-chemical conversion of different biomass fuels, such as wood (park waste wood and softwood), wheat straw, sewage sludge and refuse derived fuels. The main idea is to correlate the results of reactor design procedures with the physical properties of biomasses and the corresponding working conditions of gasifiers (temperature profile, above all), in order to point out the main differences which prevent the use of the same conversion unit for different materials. At this scope, a gasification kinetic free model was initially developed in Excel sheets, considering different values of air to biomass ratio and the downdraft gasification technology as particular examined application. The differences in syngas production and working conditions (process temperatures, above all) among the considered fuels were tried to be connected to some biomass properties, such elementary composition, ash and water contents. The novelty of this analytical approach was the use of kinetic constants ratio in order to determine oxygen distribution among the different oxidation reactions (regarding volatile matter only) while equilibrium of water gas shift reaction was considered in gasification zone, by which the energy and mass balances involved in the process algorithm were linked together, as well. Moreover, the main advantage of this analytical tool is the easiness by which the input data corresponding to the particular biomass materials can be inserted into the model, so that a rapid evaluation on their own thermo-chemical conversion properties is possible to be obtained, mainly based on their chemical composition A good conformity of the model results with the other literature and experimental data was detected for almost all the considered materials (except for refuse derived fuels, because of their unfitting chemical composition with the model assumptions). Successively, a dimensioning procedure for open core downdraft gasifiers was set up, by the analysis on the fundamental thermo-physical and thermo-chemical mechanisms which are supposed to regulate the main solid conversion steps involved in the gasification process. Gasification units were schematically subdivided in four reaction zones, respectively corresponding to biomass heating, solids drying, pyrolysis and char gasification processes, and the time required for the full development of each of these steps was correlated to the kinetics rates (for pyrolysis and char gasification processes only) and to the heat and mass transfer phenomena from gas to solid phase. On the basis of this analysis and according to the kinetic free model results and biomass physical properties (particles size, above all) it was achieved that for all the considered materials char gasification step is kinetically limited and therefore temperature is the main working parameter controlling this step. Solids drying is mainly regulated by heat transfer from bulk gas to the inner layers of particles and the corresponding time especially depends on particle size. Biomass heating is almost totally achieved by the radiative heat transfer from the hot walls of reactor to the bed of material. For pyrolysis, instead, working temperature, particles size and the same nature of biomass (through its own pyrolysis heat) have all comparable weights on the process development, so that the corresponding time can be differently depending on one of these factors according to the particular fuel is gasified and the particular conditions are established inside the gasifier. The same analysis also led to the estimation of reaction zone volumes for each biomass fuel, so as a comparison among the dimensions of the differently fed gasification units was finally accomplished. Each biomass material showed a different volumes distribution, so that any dimensioned gasification unit does not seem to be suitable for more than one biomass species. Nevertheless, since reactors diameters were found out quite similar for all the examined materials, it could be envisaged to design a single units for all of them by adopting the largest diameter and by combining together the maximum heights of each reaction zone, as they were calculated for the different biomasses. A total height of gasifier as around 2400mm would be obtained in this case. Besides, by arranging air injecting nozzles at different levels along the reactor, gasification zone could be properly set up according to the particular material is in turn gasified. Finally, since gasification and pyrolysis times were found to considerably change according to even short temperature variations, it could be also envisaged to regulate air feeding rate for each gasified material (which process temperatures depend on), so as the available reactor volumes would be suitable for the complete development of solid conversion in each case, without even changing fluid dynamics behaviour of the unit as well as air/biomass ratio in noticeable measure. The second part of this work dealt with the gas cleaning systems to be adopted downstream the gasifiers in order to run high efficiency CHP units (i.e. internal engines and micro-turbines). Especially in the case multi–fuel gasifiers are assumed to be used, weightier gas cleaning lines need to be envisaged in order to reach the standard gas quality degree required to fuel cogeneration units. Indeed, as the more heterogeneous feed to the gasification unit, several contaminant species can simultaneously be present in the exit gas stream and, as a consequence, suitable gas cleaning systems have to be designed. In this work, an overall study on gas cleaning lines assessment is carried out. Differently from the other research efforts carried out in the same field, the main scope is to define general arrangements for gas cleaning lines suitable to remove several contaminants from the gas stream, independently on the feedstock material and the energy plant size The gas contaminant species taken into account in this analysis were: particulate, tars, sulphur (in H2S form), alkali metals, nitrogen (in NH3 form) and acid gases (in HCl form). For each of these species, alternative cleaning devices were designed according to three different plant sizes, respectively corresponding with 8Nm3/h, 125Nm3/h and 350Nm3/h gas flows. Their performances were examined on the basis of their optimal working conditions (efficiency, temperature and pressure drops, above all) and their own consumption of energy and materials. Successively, the designed units were combined together in different overall gas cleaning line arrangements, paths, by following some technical constraints which were mainly determined from the same performance analysis on the cleaning units and from the presumable synergic effects by contaminants on the right working of some of them (filters clogging, catalysts deactivation, etc.). One of the main issues to be stated in paths design accomplishment was the tars removal from the gas stream, preventing filters plugging and/or line pipes clogging At this scope, a catalytic tars cracking unit was envisaged as the only solution to be adopted, and, therefore, a catalytic material which is able to work at relatively low temperatures was chosen. Nevertheless, a rapid drop in tars cracking efficiency was also estimated for this same material, so that an high frequency of catalysts regeneration and a consequent relevant air consumption for this operation were calculated in all of the cases. Other difficulties had to be overcome in the abatement of alkali metals, which condense at temperatures lower than tars, but they also need to be removed in the first sections of gas cleaning line in order to avoid corrosion of materials. In this case a dry scrubber technology was envisaged, by using the same fine particles filter units and by choosing for them corrosion resistant materials, like ceramic ones. Besides these two solutions which seem to be unavoidable in gas cleaning line design, high temperature gas cleaning lines were not possible to be achieved for the two larger plant sizes, as well. Indeed, as the use of temperature control devices was precluded in the adopted design procedure, ammonia partial oxidation units (as the only considered methods for the abatement of ammonia at high temperature) were not suitable for the large scale units, because of the high increase of reactors temperature by the exothermic reactions involved in the process. In spite of these limitations, yet, overall arrangements for each considered plant size were finally designed, so that the possibility to clean the gas up to the required standard degree was technically demonstrated, even in the case several contaminants are simultaneously present in the gas stream. Moreover, all the possible paths defined for the different plant sizes were compared each others on the basis of some defined operational parameters, among which total pressure drops, total energy losses, number of units and secondary materials consumption. On the basis of this analysis, dry gas cleaning methods proved preferable to the ones including water scrubber technology in al of the cases, especially because of the high water consumption provided by water scrubber units in ammonia adsorption process. This result is yet connected to the possibility to use activated carbon units for ammonia removal and Nahcolite adsorber for chloride acid. The very high efficiency of this latter material is also remarkable. Finally, as an estimation of the overall energy loss pertaining the gas cleaning process, the total enthalpy losses estimated for the three plant sizes were compared with the respective gas streams energy contents, these latter obtained on the basis of low heating value of gas only. This overall study on gas cleaning systems is thus proposed as an analytical tool by which different gas cleaning line configurations can be evaluated, according to the particular practical application they are adopted for and the size of cogeneration unit they are connected to.
Resumo:
In the current study, we analyze the effectiveness of an organosilane compound, 3-mercapto-propyl-tri-methoxy-silane (abbreviated PropS-SH), in the corrosion protection of fire-gilded bronzes. Firstly, the coating was applied on as-gilded bronze. Subsequently, it was also applied on pre-patinated bronze, because the substrate on which protective coatings are applied in real conservation interventions are corroded artifacts (cleaning procedures never remove all the corrosion products). Aiming to obtain results that simulate the situation of real artifacts, a dropping test that simulates outdoor exposure in runoff conditions (unsheltered areas of monuments) was employed in order to prepatinate the gilded bronze samples, which are the substrate for applying the protective coating. The preparation of the samples by applying the protective coating was performed in collaboration with the Corrosion Studies Centre “Aldo Daccò” from Ferrara University. After the artificial exposure cycles the samples underwent investigations through a variety of spectroscopic methods including SEM, Raman, FIB, AAS and color measurements. In order to evaluate the possible removal of the organosilane coating, protected samples were subjected to laser cleaning tests and characterized by SEM/EDS so as to assess the changes in composition and morphology of the treated surfaces. The laser cleaning treatment was performed at the Institute of Applied Physics “Nello Carrara” (CNR Sesto Fiorentino (FI)). The morphology and chemical composition of the samples was observed before and after the operation in order to obtain information about the fluence and type of laser which are best suited to the removal of this type of coating.
Resumo:
Includes index.
Resumo:
"HWRIC TR-012."
Resumo:
Mode of access: Internet.
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.