996 resultados para Clay. Grog. Manganese residue. Channel sediment. Paver ceramic
Resumo:
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the α-helical content increases from 60–64% to 80–90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 Å2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled α-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
Resumo:
A 0.25 m**2 United States Naval Electronics Laboratory box corer was used to take replicate samples from an oligotrophic bottom under the North Pacific Central Water Mass (~28°N, 155°W). The bottom is a red clay with manganese nodules at a depth of 5500-5800 m. Macrofaunal density ranges from 84 to 160 individuals per m**2 and is therefore much the same as in Northwest Atlantic Gyre waters. Of the macrofaunal taxa, polychaetes dominate (55 %), followed by tanaids (18 %), bivalves (7 %), and isopods (6 %). Meiofaunal taxa were only partially retained by the 297 µm screen used in washing. Even then, they are 1.5-3.9 times as abundant as the macrofaunal taxa, with nematodes being numerically dominant by far. Foraminifera seem to comprise an important portion of the community, but could not be assessed accurately because of the inability to discriminate living and dead tests. Remains of what are probably xenophyophoridans are also very important, but offer the same problem. Faunal diversity is extremely high, with deposit feeders comprising the overwhelming majority. Most species are rare, being encountered only once. The distributions of only three species show any significant deviation from randomness. The polychaete fauna from box cores collected from 90 miles to the north was not significantly different from that of the principal study locality. Concordance appeared at several taxonomic levels, from species through macrofaunal/meiofaunal relationships. As a result, the variation in total animal abundance shows aggregation among cores. We discuss Sokolova's concept of a deep-sea oligotrophic zone dominated by suspension feeders, and reconcile it with our present findings. The high diversity of the fauna combined with the low food level contradict theories that relate diversity directly with productivity.
Resumo:
A 0.25 m US Naval Electronics Lab box corer was used to take replicate samples from an oligotrophic bottom under the North Pacific Central Water Mass (approx. 28 degrees N, 155 degrees W). The bottom is a red clay with manganese nodules at a depth of 5500-5800 m. Macrofaunal density ranges from 84 to 160 individuals per m super(2) and is therefore much the same as in Northwest Atlantic Gyre waters. Of the macrofaunal taxa, polychaetes dominate (55 per cent), followed by tanaids (18 per cent), bivalves (7 per cent), and isopods (6 per cent). Meiofaunal taxa were only partially retained by the 297 micrometer screen used in washing. Even then, they are 1.5-3.9 times as abundant as the microfaunal taxa, with nematodes being numerically dominant by far. Foraminifera seem to comprise an important portion of the community, but could not be assessed accurately because of the inability to discriminate living and dead tests. Remains of what are probably xenophyophoridans are also very important, but offer the same problem. Faunal diversity is extremely high, with deposit feeders comprising the overwhelming majority. Most spp are rare, being encountered only once. The distributions of only 3 spp show any significant deviation from randomness. The polychaete fauna from box cores collected from 90 m to the north was not significantly different from that of the principal study locality. Concordance appeared at several taxonomic levels, from spp through microfaunal/ meiofaunal relationships. As a result, the variation in total animal abundance shows aggregation among cores. The authors discuss Sokolova's concept of a deep-sea oligotrophic zone dominated by suspension feeders, and reconcile it with our present findings. The high diversity of the fauna combined with the low food level contradict theories that relate diversity directly with productivity.
Resumo:
Sediment samples from approximately 40 stations in the Western, middle and eastern Baltic Sea were investigated for manganese and iron content. In a series of interstitial water samples and numerous deep and surface water samples, the manganese content was likewise determined. A strong enrichment of these elements in the basin sediments was shown. In many instances, several percent manganese were present. As a maximum value, 13% was found in a 1 mm thick layer. Furthermore, a distinct decrease in manganese content with increasing sediment depth was shown in the upper 10 to 20 cm of the Sediment at almost all stations. Both phenomena may be explained by the release of manganese from the Sediment through diffusion. In the flat parts of the Baltic and those parts having good bottom water circulation, this diffusion progresses especially vigorously as a result of a steep gradient of the Mn++ concentration in the interstitial water-deep water interface. The manganese which hereby passes into the water overlying the bottom (manganese contents between 10 and 100 y Mn/l were determined in numerous deep water samples) is partly reprecipitated on the Sediment surface, and partly carried by currents into the deeper basins where it is finallv deposited. It is bound there as a manganese-rich mixed carbonate, the composition of which can be proved chemically and by x-ray methods. Iron is likewise of higher content in the basinal sediments, however, the extent of its enrichment is far less since it is less soluble than manganese under the reducing conditions in the sediments. The fine bands of manganese- and iron-rich layers in the basin sediments may likewise be explained as a result of diffusion.
Resumo:
Manganese encrustations from two adjacent sampling sites in the Gulf of Aden display markedly different compositional characteristics. The enrichment of manganese, and consequent depletion of iron and a series of trace elements, in the manganiferous crusts from Sta. 6243 is attributed to the diagenetic remobilisation of manganese within the sediment column and the resultant enrichment of this element in the encrustations from this station. Molybdenum, and possibly nickel, appear to show similar migration characteristics. Submarine vulcanism does not appear to play any significant role in controlling nodule composition within the area.
Resumo:
The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing
Resumo:
A análise acadêmica ora apresentada reflete a pesquisa vivencial que, como investigador do Programa de Pós-Graduação em Artes da Universidade do Estado do Rio de Janeiro (em sua linha de estudos em Arte, Cultura e Cognição), aferi em aldeias Mbyá-Guarani nas cidades de Niterói e Maricá desde o ano de 2012 a respeito de sua arte em barro. Com aportes etnohistóricos da sua cerâmica ancestral, esta ação foi assim realizada por levantamento de dados tanto pré-históricos quanto históricos focados sobre si. Porém, reconhecendo a escassez de seu fabrico entre aqueles Mbyá e, paradoxalmente, que ainda existam em seu meio mostras de que os artefatos de barro permanecem memorialmente sendo importantes para esse povo, tal exame não se restringiu a conhecer apenas a morfologia desses objetos, mas procurou vislumbrar um tanto de sua simbologia e recuperar essa ocorrência prática por meio de atividades artístico-pedagógicas junto às crianças dali. Portanto, através da pesquisa-ação e do método educativo de Célestin Freinet se buscou apontar oportunidades de revitalização dentro da sociedade Mbyá dessa memória do exercício de construção oleiro e de seu devido valor às suas crianças
Resumo:
This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).
Resumo:
Based on the study of fluvial sandstone reservoir in upper of Guantao group in Gudao and Gudong oilfields, this paper first introduces A.D.Miall's(1996a) architectural-element analysis method that was summarized from ground outcrop scale into the reservoir formation research of the study area, more subtly divides sedimentary microfacies and establishes sedimentary model of research area.on this base, this paper summarizes the laws of residual oil distribution of fluvial formation and the control effect of sedimentary microfacies to residual oil distribution, and reveals residual oil formation mechanism. These results have been applied to residual oil production, and the economic effect is good. This paper will be useful for residual oil research and production and enhancement of oil recovery in similar reservoir. The major conclusions of this paper are as follows. 1. Using the architectural-element analysis method to the core data, a interfacial division scheme of the first to the dixth scale is established for the studied fluvial formation. 2.Seven architectural-elements are divided in upper of Guantao group of study area. The sandstone group 5~1+2 of Neogene upper Gutao group belongs to high sinuous fine grain meandering river, and the sandstone group 6 is sandy braided river. 3. Inter layer, the residual oil saturation of "non-main layer" is higher than "main layer", but the residual recoverable reserve of former is larger. Therefore, "main layer" is the main body of residual oil distribution. The upper and middle part of inner layer has lower permeability and strong seeping resistance. Addition to gravity effect in process of driving, its driving efficiency is low; residual oil saturation is high. Because of controlling of inside non-permeable interlayer or sedimentary construction, the residual oil saturation of non-driving or lower driving efficiency position also is high. On plane, the position of high residual oil saturation mostly is at element LV, CS, CH (FF), FF etc, Which has lower porosity and permeability, as well as lens sand-body and sand-body edge that is not controlled by well-net, non-perfect area of injection and production, lower press difference resort area of inter-well diffiuent-line and shelter from fault, local high position of small structure. 4.Microscopic residual oil mainly includes the non-moved oil in the structure of fine pore network, oil in fine pore and path, oil segment in pore and path vertical to flow direction, oil spot or oil film in big pore, residual oil in non-connective pore. 5.The most essential and internal controlling factor of fluvial formation residual oil distribution is sedimentary microfacies. Status of injection and production is the exterior controlling factor of residual oil distribution. 6. The controlling effect of formation sedimentary microfacies to residual oil distribution indicates inter-layer vertical sedimentary facies change in scale of injection and production layer-series, planar sedimentary face change and inner-layer vertical sedimentary rhythm and interbed in single layer to residual oil distribution. 7. It is difficult to clear up the inter-layer difference in scale of injection and production layer-series. The using status of minor layer is not good and its residual oil saturation is high relatively. It is obvious that inter-layer vertical sedimentary facies changes control inter-layer residual oil distribution at the same or similar conditions of injection and production. For fluvial formation, this vertical sedimentary facies change mainly is positive
gyration. Namely, from down to top, channel sediment (element CHL, LA) changes into over-bank sediment (element LV, CR, CS).
8. In water-injection developing process of transverse connecting fluvial sandstone oil formation, injection water always comes into channel nearby, and breaks through along
channel and orientation of high pressure gradient, does not expand into side of channel until pressure gradient of channel orientation changes into low. It brings about that water-driving status of over-bank sedimentary element formation (LV, CR, CS) is not good, residual oil saturation is high. In non-connective abandoned channel element (CH
Resumo:
Neste trabalho foram efectuados estudos de natureza químico – mineralógica e tecnológica em quatro depósitos sedimentares: Vale Grande, Aguada de Cima, Anadia e Monsarros. Estes estudo permitiram o estabelecimento da coluna tipológica em cada um dos depósitos. No jazigo de Aguada evidencia-se a existência de dois níveis argilosos: a unidade “Barro Negro” de natureza ilito-quartzo-caulinítica (argilas especiais) e a unidade “Argilas de Boialvo” com composição quartzo – ilite – caulinite (argilas comuns). Nos jazigos de Anadia e Monsarros o enchimento argiloso é constituído por argilas compatíveis com as da unidade “Argilas de Boialvo” do jazigo de Aguada, não existindo evidências de deposição de argilas de natureza da unidade “Barro Negro”. Em complemento, foram realizados estudos químicos (elementos menores e Terras Raras) nos diferentes depósitos lutíticos para inferir a importância dos minerais acessórios e argilosos na sua distribuição, de modo a poder determinar-se a sua proveniência. Neste trabalho foi também realizado um estudo de pormenor, de natureza mineralógica (DRX) e química (maiores, menores e Terras Raras), das possíveis rochas-fonte. Perante os resultados obtidos através do estudo mineralógico, químico (elementos maiores, menores e Terras Raras) e, ainda, dos estudos isotópicos Rb-Sr e Sm-Nd, pode inferir-se que o Complexo Xisto-Grauváquico foi a formação geológica que mais material forneceu para a formação dos sedimentos argilosos que ocorrem nas áreas de Vale Grande, Aguada, Anadia e Monsarros. Por último, apresenta-se uma definição para o conceito de argila especial cerâmica, utilizado na gama alta da indústria cerâmica, tendo em consideração o padrão químico, mineralógico e tecnológico.