962 resultados para Classification de types de pieds
Resumo:
Similarity measurements between 3D objects and 2D images are useful for the tasks of object recognition and classification. We distinguish between two types of similarity metrics: metrics computed in image-space (image metrics) and metrics computed in transformation-space (transformation metrics). Existing methods typically use image and the nearest view of the object. Example for such a measure is the Euclidean distance between feature points in the image and corresponding points in the nearest view. (Computing this measure is equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a different type of metrics: transformation metrics. These metrics penalize for the deformatoins applied to the object to produce the observed image. We present a transformation metric that optimally penalizes for "affine deformations" under weak-perspective. A closed-form solution, together with the nearest view according to this metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in the sense that they bound each other from both above and below. For Euclidean image metric we offier a sub-optimal closed-form solution and an iterative scheme to compute the exact solution.
Resumo:
The use of terms such as “Engineering Systems”, “System of systems” and others have been coming into greater use over the past decade to denote systems of importance but with implied higher complexity than for the term systems alone. This paper searches for a useful taxonomy or classification scheme for complex Systems. There are two aspects to this problem: 1) distinguishing between Engineering Systems (the term we use) and other Systems, and 2) differentiating among Engineering Systems. Engineering Systems are found to be differentiated from other complex systems by being human-designed and having both significant human complexity as well as significant technical complexity. As far as differentiating among various engineering systems, it is suggested that functional type is the most useful attribute for classification differentiation. Information, energy, value and mass acted upon by various processes are the foundation concepts underlying the technical types.
Resumo:
R. Zwiggelaar, S.M. Astley, C.J. Taylor and C.R.M. Boggis, 'Linear structures in mammographic images: detection and classification', IEEE Transaction on Medical Imaging 23 (9), 1077-1086 (2004)
Resumo:
Composite resins and glass-ionomer cements were introduced to dentistry in the 1960s and 1970s, respectively. Since then, there has been a series of modifications to both materials as well as the development other groups claiming intermediate characteristics between the two. The result is a confusion of materials leading to selection problems. While both materials are tooth-colored, there is a considerable difference in their properties, and it is important that each is used in the appropriate situation. Composite resin materials are esthetic and now show acceptable physical strength and wear resistance. However, they are hydrophobic, and therefore more difficult to handle in the oral environment, and cannot support ion migration. Also, the problems of gaining long-term adhesion to dentin have yet to be overcome. On the other hand, glass ionomers are water-based and therefore have the potential for ion migration, both inward and outward from the restoration, leading to a number of advantages. However, they lack the physical properties required for use in load-bearing areas. A logical classification designed to differentiate the materials was first published by McLean et al in 1994, but in the last 15 years, both types of material have undergone further research and modification. This paper is designed to bring the classification up to date so that the operator can make a suitable, evidence-based, choice when selecting a material for any given situation.
Resumo:
Background - Iris cysts in children are uncommon and there is relatively little information on their classification, incidence, and management. Methods - The records of all children under age 20 years who were diagnosed with iris cyst were reviewed and the types and incidence of iris cysts of childhood determined. Based on these observations recommendations were made regarding management of iris cysts in children. Results - Of 57 iris cysts in children, 53 were primary and four were secondary. There were 44 primary cysts of the iris pigment epithelium, 34 of which were of the peripheral or iridociliary type, accounting for 59% of all childhood iris cysts. It was most commonly diagnosed in the teenage years, more common in girls (68%), was not recognised in infancy, remained stationary or regressed, and required no treatment. The five mid-zonal pigment epithelial cysts were diagnosed at a mean age of 14 years, were more common in boys (83%), remained stationary, and required no treatment. The pupillary type of pigment epithelial cyst was generally recognised in infancy and, despite involvement of the pupillary aperture, also required no treatment. There were nine cases of primary iris stromal cysts, accounting for 16% of all childhood iris cysts. This cyst was usually diagnosed in infancy, was generally progressive, and required treatment in eight of the nine cases, usually by aspiration and cryotherapy or surgical resection. Among the secondary iris cysts, two were post-traumatic epithelial ingrowth cysts and two were tumour induced cysts, one arising from an intraocular lacrimal gland choristoma and one adjacent to a peripheral iris naevus. Conclusions - Most iris cysts of childhood are primary pigment epithelial cysts and require no treatment. However, the iris stromal cyst, usually recognised in infancy, is generally an aggressive lesion that requires treatment by aspiration or surgical excision.
Resumo:
During recent years, the increasing knowledge of genetic and physiological changes in polycythemia vera (PV) and of different types of congenital erythrocytosis has led to fundamental changes in recommendations for the diagnostic approach to patients with erythrocytosis. Although widely accepted for adult patients this approach may not be appropriate with regard to children and adolescents affected by erythrocytosis. The "congenital erythrocytosis" working group established within the framework of the MPN&MPNr-EuroNet (COST action BM0902) addressed this question in a consensus finding process and developed a specific algorithm for the diagnosis of erythrocytosis in childhood and adolescence which is presented here. Pediatr Blood Cancer 2013;9999:XX-XX. © 2013 Wiley Periodicals, Inc.
Resumo:
This paper seeks to discover in what sense we can classify vocabulary items as technical terms in the later medieval period. In order to arrive at a principled categorization of technicality, distribution is taken as a diagnostic factor: vocabulary shared across the widest range of text types may be assumed to be both prototypical for the semantic field, but also the most general and therefore least technical terms since lexical items derive at least part of their meaning from context, a wider range of contexts implying a wider range of senses. A further way of addressing the question of technicality is tested through the classification of the lexis into semantic hierarchies: in the terms of componential analysis, having more components of meaning puts a term lower in the semantic hierarchy and flags it as having a greater specificity of sense, and thus as more technical. The various text types are interrogated through comparison of the number of levels in their hierarchies and number of lexical items at each level within the hierarchies. Focusing on the vocabulary of a single semantic field, DRESS AND TEXTILES, this paper investigates how four medieval text types (wills, sumptuary laws, petitions, and romances) employ technical terminology in the establishment of the conventions of their genres.
Resumo:
Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Travail réalisé à l'École de bibliothéconomie et des sciences de l'information (EBSI), Université de Montréal, sous la direction de Mme Audrey Laplante dans le cadre du cours SCI6850 Recherche individuelle, à l'automne 2012.
Resumo:
Pre-publication drafts are reproduced with permission and copyright © 2013 of the Journal of Orthopaedic Trauma [Mutch J, Rouleau DM, Laflamme GY, Hagemeister N. Accurate Measurement of Greater Tuberosity Displacement without Computed Tomography: Validation of a method on Plain Radiography to guide Surgical Treatment. J Orthop Trauma. 2013 Nov 21: Epub ahead of print.] and copyright © 2014 of the British Editorial Society of Bone and Joint Surgery [Mutch JAJ, Laflamme GY, Hagemeister N, Cikes A, Rouleau DM. A new morphologic classification for greater tuberosity fractures of the proximal humerus: validation and clinical Implications. Bone Joint J 2014;96-B:In press.]
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
A Bayesian method of classifying observations that are assumed to come from a number of distinct subpopulations is outlined. The method is illustrated with simulated data and applied to the classification of farms according to their level and variability of income. The resultant classification shows a greater diversity of technical charactersitics within farm types than is conventionally the case. The range of mean farm income between groups in the new classification is wider than that of the conventional method and the variability of income within groups is narrower. Results show that the highest income group in 2000 included large specialist dairy farmers and pig and poultry producers, whilst in 2001 it included large and small specialist dairy farms and large mixed dairy and arable farms. In both years the lowest income group is dominated by non-milk producing livestock farms.