1000 resultados para Classificação supervisionada de imagens


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uma das tarefas da pesquisa em Arqueologia da Amazônia é compreender as relações entre as populações humanas pretéritas e a floresta tropical úmida. É muito importante definir as unidades de paisagem no contexto do processo de ocupação humana e assim, integrar esses dados ao contexto dos sítios arqueológicos. Este estudo tem como objetivo definir a composição de unidades de paisagem atual do sítio arqueológico PA-BA-84: ALUNORTE, em termos taxonômicos, utilizando a abordagem geográfica da Ecologia de Paisagem como uma eficiente ferramenta na política de preservação do patrimônio arqueológico. Esta abordagem sistêmica destaca a interdependência mútua dos elementos da paisagem e as interações entre estes, gerando duas unidades espaciais de análise do sítio arqueológico: o micromeio e o macromeio. A classificação taxonômica das unidades de paisagem está relacionada com a aplicação de diferentes escalas espaciais, onde o geossistema refere-se às escalas de menor detalhe para a análise do macromeio do sítio, enquanto as unidades geofácies e geótopo relacionam-se às escalas de maior detalhe referentes à análise do micromeio. O resgate das informações ambientais passa pelo uso sensoriamento remoto e o geoprocessamento da imagem SPOT, como uma ferramenta eficaz para a definição das unidades de paisagem. A classificação da imagem foi otimizada com o classificador baseado em redes neurais, com trabalhos de campo e com dados do Programa de Arqueologia Preventiva na área do Projeto Bauxita Paragominas/PA. Desta forma, a definição das unidades de paisagem do sitio Alunorte passa pela associação de classificação não supervisionada com classificação supervisionada. Os resultados mostraram que o geossistema do macromeio é constituído por oito geofácies, representadas por áreas construídas, áreas de cultivo agrícolas, rios, praias, várzea, vegetação em áreas alagadas, capoeira adulta e capoeira jovem. A delimitação espacial do geossistema obedece aos limites da bacia hidrográfica do rio Murucupi. O micromeio é definido a partir do sistema de nascente do rio Murucupi e apresenta cinco geofácies que são constituídas por áreas construídas, rios, praias, várzea, capoeira adulta e capoeira jovem. O sítio está assentado sobre rampas de colúvio, a qual é constituída por rampas inferior, média e superior, o que está diretamente relacionado com os geotópos que cobrem o relevo do micromeio. Na rampa superior foi registrada a maior concentração de vestígios arqueológicos, o que representa, certamente, o local do assentamento humano pretérito, no processo de ocupação pré-histórico, iniciado há mil anos, o que coincide com uma paleogeofácies de manguezal na praia de Itupanema. O geossistema é caracterizado por um alto grau de antropização representado a partir de ciclos cada vez mais curtos de regeneração da cobertura vegetal. Esta degradação afeta diretamente o patrimônio arqueológico, por isso, os estudos que visam preservar esse patrimônio, preocupados com o resgate do processo de ocupação da Amazônia, devem priorizar a preservação conjunta do mesmo com o geossistema em que está inserido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an effect of the imbalance caused by the damming of rivers and pollution, it has been observed a growing aquatic plants infestation in reservoirs for the generation of electricity. In addition to power generation, these sites have also been used for various other purposes, including recreation, attracting water and navigation. Thus it is important to evaluate these water bodies periodically, in order to verify the leading conditions to the growth of algae, plants and other organisms. In this sense, Remote sensing technology can be a valuable tool for mapping and monitoring the occupation of land in the vicinity of the water body and the optical properties of water, to provide subsidies for the effective management of these aquatic environments. This paper aims to perform the monitoring of the occurrence of aquatic plants in Salto Grande Hydropower Reservoir, located in Americana (SP) and, periodically, map the occupation of land in the vicinity of the water body, through multispectral images taken by sensors on the satellites Landsat series in seven consecutive years: 2004, 2005, 2006, 2007, 2008, 2009 and 2010. The adopted methodological procedure included the images data and the classification of multispectral images to map, every year, the location and extension of the area infested by aquatic plants and the occupation of land

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Humans have a high ability to extract visual data information acquired by sight. Trought a learning process, which starts at birth and continues throughout life, image interpretation becomes almost instinctively. At a glance, one can easily describe a scene with reasonable precision, naming its main components. Usually, this is done by extracting low-level features such as edges, shapes and textures, and associanting them to high level meanings. In this way, a semantic description of the scene is done. An example of this, is the human capacity to recognize and describe other people physical and behavioral characteristics, or biometrics. Soft-biometrics also represents inherent characteristics of human body and behaviour, but do not allow unique person identification. Computer vision area aims to develop methods capable of performing visual interpretation with performance similar to humans. This thesis aims to propose computer vison methods which allows high level information extraction from images in the form of soft biometrics. This problem is approached in two ways, unsupervised and supervised learning methods. The first seeks to group images via an automatic feature extraction learning , using both convolution techniques, evolutionary computing and clustering. In this approach employed images contains faces and people. Second approach employs convolutional neural networks, which have the ability to operate on raw images, learning both feature extraction and classification processes. Here, images are classified according to gender and clothes, divided into upper and lower parts of human body. First approach, when tested with different image datasets obtained an accuracy of approximately 80% for faces and non-faces and 70% for people and non-person. The second tested using images and videos, obtained an accuracy of about 70% for gender, 80% to the upper clothes and 90% to lower clothes. The results of these case studies, show that proposed methods are promising, allowing the realization of automatic high level information image annotation. This opens possibilities for development of applications in diverse areas such as content-based image and video search and automatica video survaillance, reducing human effort in the task of manual annotation and monitoring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Pós-Graduação em Geologia, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atualmente, a degradação ambiental é problema dos gestores municipais e os projetos de monitoramento / recuperação incluem coleta, integração e análise de dados de natureza diversa. Este trabalho foi desenvolvido com uso de geotecnologias como suporte ao diagnóstico e gerenciamento ambiental do Município de Cambará do Sul, Rio Grande do Sul, Brasil. O cartografia florestal gerou mapa de cobertura do solo por classificação MAXVER sobre imagens TM LANDSAT 5. O levantamento de campo diagnosticou os conflitos de uso conforme a Legislação Ambiental. A partir disto foi elaborada proposta de enquadramento por sub-bacias, visando monitoramento ambiental. O estudo demonstrou possibilidades de obter respostas rápidas com emprego de geotecnologias a baixo custo. As informações compõe banco de dados podendo ser atualizado periodicamente e consultado publicamente. Este trabalho faz parte do Projeto Curicaca, Convênio 025/96, Ministério do Meio Ambiente e abordou usos do solo e água visando a classificação de bacias hidrográficas.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

No passado recente foram desenvolvidas v árias t écnicas para classi ca ção de dados hiperspectrais. Uma abordagem tí pica consiste em considerar que cada pixel e uma mistura linear das reflectancias espectrais dos elementos presentes na c élula de resolu ção, adicionada de ru ído. Para classifi car e estimar os elementos presentes numa imagem hiperespectral, v ários problemas se colocam: Dimensionalidade dos dados, desconhecimento dos elementos presentes e a variabilidade da reflectância destes. Recentemente foi proposta a An álise em Componentes Independentes,para separa ção de misturas lineares. Nesta comunica ção apresenta-se uma metodologia baseada na An álise em Componentes Independentes para detec ção dos elementos presentes em imagens hiperespectrais e estima ção das suas quantidades. Apresentam-se resultados desta metodologia com dados simulados e com dados hiperespectrais reais, ilustrando a potencialidade da t écnica.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relatório de Estágio de Mestrado em Gestão do Território - Especialização em Detecção Remota e Sistemas de Informação Geográfica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão do Território, Especialização em Detecção Remota e Sistemas de Informação Geográfica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Técnicas de sensoriamento remoto são fundamentais para o monitoramento das mudanças de uso da terra, principalmente em áreas extensas como a Amazônia. O mapeamento de uso da terra, geralmente é realizado por métodos de classificação manual ou digital pixel a pixel, os quais consomem muito tempo. Este estudo aborda a aplicação do modelo linear de mistura em uma imagem Landsat-TM segmentada para o mapeamento das classes de uso da terra na região do reservatório de Tucuruí-PA para os anos de 1996 e 2001.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este estudo apresenta uma abordagem metodológica baseada em imagens de radar e nos critérios de tonalidade, tamanho e forma geométrica para identificar prováveis pistas de pouso não-homologadas na Amazônia. Os seguintes procedimentos foram conduzidos: georreferenciamento da imagem do sensor SAR-R99B do município paraense de Itaituba, adquirida na banda L, polarização HH e resolução espacial de três metros; subtração do ruído speckle com filtro mediana; classificação com a técnica não-supervisionada ISODATA; vetorização da classe indicativa dos alvos de interesse; e cálculo e seleção automática dos alvos de interesse por critérios de índice de circularidade e de tortuosidade. Foram identificados dez alvos, dos quais dois foram considerados como prováveis pistas de pouso pelos referidos índices.