445 resultados para Circadian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pineal melatonin release exhibits a circadian rhythm with a tight nocturnal pattern. Melatonin synthesis is regulated by the master circadian clock within the hypothalamic suprachiasmatic nucleus (SCN) and is also directly inhibited by light. The SCN is necessary for both circadian regulation and light inhibition of melatonin synthesis and thus it has been difficult to isolate these two regulatory limbs to define the output pathways by which the SCN conveys circadian and light phase information to the pineal. A 22-h light-dark (LD) cycle forced desynchrony protocol leads to the stable dissociation of rhythmic clock gene expression within the ventrolateral SCN (vlSCN) and the dorsomedial SCN (dmSCN). In the present study, we have used this protocol to assess the pattern of melatonin release under forced desynchronization of these SCN subregions. In light of our reported patterns of clock gene expression in the forced desynchronized rat, we propose that the vlSCN oscillator entrains to the 22-h LD cycle whereas the dmSCN shows relative coordination to the light-entrained vlSCN, and that this dual-oscillator configuration accounts for the pattern of melatonin release. We present a simple mathematical model in which the relative coordination of a single oscillator within the dmSCN to a single light-entrained oscillator within the vlSCN faithfully portrays the circadian phase, duration and amplitude of melatonin release under forced desynchronization. Our results underscore the importance of the SCN`s subregional organization to both photic input processing and rhythmic output control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circadian rhythms are regarded as essentially ubiquitous features of animal behavior and are thought to confer important adaptive advantages. However, although circadian systems of rodents have been among the most extensively studied, most comparative biology is restricted to a few related species. In this study, the circadian organization of locomotor activity was studied in the subterranean, solitary north Argentinean rodent, Ctenomys knightii. The genus, Ctenomys, commonly known as Tuco-tucos, comprises more than 50 known species over a range that extends from 12S latitude into Patagonia, and includes at least one social species. The genus, therefore, is ideal for comparative and ecological studies of circadian rhythms. Ctenomys knightii is the first of these to be studied for its circadian behavior. All animals were wild caught but adapted quickly to laboratory conditions, with clear and precise activity-rest rhythms in a light-dark (LD) cycle and strongly nocturnal wheel running behavior. In constant dark (DD), the rhythm expression persisted with free-running periods always longer than 24h. Upon reinstatement of the LD cycle, rhythms resynchronized rapidly with large phase advances in 7/8 animals. In constant light (LL), six animals had free-running periods shorter than in DD, and 4/8 showed evidence of splitting. We conclude that under laboratory conditions, in wheel-running cages, this species shows a clear nocturnal rhythmic organization controlled by an endogenous circadian oscillator that is entrained to 24h LD cycles, predominantly by light-induced advances, and shows the same interindividual variable responses to constant light as reported in other non-subterranean species. These data are the first step toward understanding the chronobiology of the largest genus of subterranean rodents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melatonin, the pineal gland hormone, provides entrainment of many circadian rhythms to the ambient light/dark cycle. Recently, cardiovascular studies have demostrated melatonin interactions with many physiological processes and diseases, such as hypertension and cardiopathologies. Although membrane melatonin receptors (MT1, MT2) and the transcriptional factor ROR alpha have been reported to be expressed in the heart, there is no evidence of the cell-type expressing receptors as well as the possible role of melatonin on the expression of the circadian clock of cardiomyocytes, which play an important role in cardiac metabolism and function. Therefore, the aim of this study was to evaluate the mRNA and protein expressions of MT1, MT2, and ROR alpha and to determine whether melatonin directly influences expression of circadian clocks within cultured rat cardiomyocytes. Adult rat cardiomyocyte cultures were created, and the cells were stimulated with 1 nM melatonin or vehicle. Gene expressions were assayed by real-time polymerase chain reaction (PCR). The mRNA and protein expressions of membrane melatonin receptors and RORa were established within adult rat cardiomyocytes. Two hours of melatonin stimulation did not alter the expression pattern of the analyzed genes. However, given at the proper time, melatonin kept Rev-erb alpha expression chronically high, specifically 12 h after melatonin treatment, avoiding the rhythmic decline of Rev-erb alpha mRNA. The blockage of MT1 and MT2 by luzindole did not alter the observed melatonin-induced expression of Rev-erb alpha mRNA, suggesting the nonparticipation of MT1 and MT2 on the melatonin effect within cardiomyocytes. It is possible to speculate that melatonin, in adult rat cardiomyocytes, may play an important role in the light signal transduction to peripheral organs, such as the heart, modulating its intrinsic rhythmicity. (Author correspondence: cipolla@icb.usp.br)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of the in vitro circadian-like exposure to melatonin [in the presence or absence of insulin (Ins)] on the metabolism and clock gene expression in adipocytes. To simulate the cyclic characteristics of the daily melatonin profile, isolated rat adipocytes were exposed in a circadian-like pattern to melatonin added to the incubating medium for 12 hr (mimicking the night), followed by an equal period without melatonin (mimicking the day) combined or not with Ins. This intermittent incubation was interrupted when four and a half 24-hr cycles were fulfilled. At the end, either during the induced night (melatonin present) or the induced day (melatonin absent), the rates of lipolysis and D-[U-(14)C]-glucose incorporation into lipids were estimated, in addition to the determination of lipogenic [glucose-6-phosphate dehydrogenase and fatty acid synthase (FAS)] and lipolytic (hormone sensitive lipase) enzymes and clock gene (Bmal-1b, Clock, Per-1 and Cry-1) mRNA expression. The leptin release was also measured. During the induced night, the following effects were observed: an increase in the mRNA expression of Clock, Per-1 and FAS; a rise in lipogenic response and leptin secretion; and a decrease in the lipolytic activity. The intermittent exposure of adipocytes to melatonin temporally and rhythmically synchronized their metabolic and hormonal function in a circadian fashion, mimicking what is observed in vivo in animals during the daily light-dark cycle. Therefore, this work helps to clarify the physiological relevance of the circadian pattern of melatonin secretion and its interactions with Ins, contributing to a better understanding of the adipocyte biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic intergeniculate leaflet (IGL) are considered to be the main centers of the mammalian circadian timing system. In primates, the IGL is included as part of the pregeniculate nucleus (PGN), a cell group located mediodorsally to the dorsal lateral geniculate nucleus. This work was carried out to comparatively evaluate the immunohistochemical expression of the calcium-binding proteins calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) into the circadian brain districts of the common marmoset and the rock cavy. In both species, although no fibers, terminals or perikarya showed PV-immunoreaction (IR) into the SCN, CB-IR perikarya labeling was detected throughout the SCN rostrocaudal extent, Seeming to delimit its cytoarchitectonic borders. CR-IR perikarya and neuropil were noticed into the ventral and dorsal portions of the SCN, lacking immunoreactivity in the central core of the marmoset and filling the entire nucleus in the rockcavy. The PGN of the marmoset presented a significant number of CB-, PV-, and CR-IR perikarya throughout the nucleus. The IGL of the rocky cavy exhibited a prominent CB- and CR-IR neuropil, showing similarity to the pattern found in other rodents. By comparing with literature data from other mammals, the results of the present study suggest that CB, PV, and CR are differentially distributed into the SCN and IGL among species. They may act either in concert or in a complementary manner in the SCN and IGL, so as to participate in specific aspects of the circadian regulation. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified version of the social habituation/dis-habituation paradigm was employed to examine social recognition memory in Wistar rats during two opposing (active and inactive) circadian phases, using different intertrial intervals (30 and 60 min). Wheel-running activity was monitored continuously to identify circadian phase. To avoid possible masking effects of the light-dark cycle, the rats were synchronized to a skeleton photoperiod, which allowed testing during different circadian phases under identical lighting conditions. In each trial, an infantile intruder was introduced into an adult`s home-cage for a 5-minute interaction session, and social behaviors were registered. Rats were exposed to 5 trials per day for 4 consecutive days: oil days I and 2, each resident was exposed to the same intruder; on days 3 and 4, each resident was exposed to a different intruder in each trial. I he resident`s social investigatory behavior was more intense when different intruders were presented compared to repeated presentation of the same intruder, suggesting social recognition memory. This effect was stronger when the rats were tested during the inactive phase and when the intertrial interval was 60 min, These findings Suggest that social recognition memory, as evaluated in this modified habituation/dis-habituation paradigm, is influenced by the circadian rhythm phase during which testing is performed, and by intertrial interval. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtually every mammalian cell, including cardiomyocytes, possesses an intrinsic circadian clock. The role of this transcriptionally based molecular mechanism in cardiovascular biology is poorly understood. We hypothesized that the circadian clock within the cardiomyocyte influences diurnal variations in myocardial biology. We, therefore, generated a cardiomyocyte-specific circadian clock mutant (CCM) mouse to test this hypothesis. At 12 wk of age, CCM mice exhibit normal myocardial contractile function in vivo, as assessed by echocardiography. Radiotelemetry studies reveal attenuation of heart rate diurnal variations and bradycardia in CCM mice (in the absence of conduction system abnormalities). Reduced heart rate persisted in CCM hearts perfused ex vivo in the working mode, highlighting the intrinsic nature of this phenotype. Wild-type, but not CCM, hearts exhibited a marked diurnal variation in responsiveness to an elevation in workload (80 mmHg plus 1 mu M epinephrine) ex vivo, with a greater increase in cardiac power and efficiency during the dark (active) phase vs. the light (inactive) phase. Moreover, myocardial oxygen consumption and fatty acid oxidation rates were increased, whereas cardiac efficiency was decreased, in CCM hearts. These observations were associated with no alterations in mitochondrial content or structure and modest mitochondrial dysfunction in CCM hearts. Gene expression microarray analysis identified 548 and 176 genes in atria and ventricles, respectively, whose normal diurnal expression patterns were altered in CCM mice. These studies suggest that the cardiomyocyte circadian clock influences myocardial contractile function, metabolism, and gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scent-marking behavior is associated with different behavioral contexts in callitrichids, including signalizing a territory, location of feeding resources, and social rank. In marmosets and tamarins it is also associated with intersexual communication. Though it appears very important for the daily routine of the individuals, very few researchers have investigated distribution through the 24-h cycle. In a preliminary report, we described a preferential incidence of this behavior 2 h before nocturnal rest in families of common marmosets. We expand the data using 8 family groups (28 subjects), 8 fathers, 6 mothers, 8 nonreproductive adults (4 sons and 4 daughters), and 6 juvenile (3 sons and 3 daughters) offspring that we kept in outdoor cages under natural environmental conditions. We recorded the frequency of anogenital scent marking for each group during the light phase, twice a wk, for 4 consecutive wks, from March 1998 to September 1999. Cosinor test detected 24- and 8-h variations in 89.3% and 85.7% of the subjects, respectively, regardless of sex or reproductive status. The 8-h component is a consequence of the 2 peaks for the behavior, at the beginning and end of the light phase. Daily distribution of scent marking is similar to that others described previously for motor activity in marmosets. The coincident rhythmical patterns for both behaviors seem to be associated with feeding behavior, as described for callitrichids in free-ranging conditions, involving an increase in foraging activities early in the morning and shortly before nocturnal rest

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No presente trabalho foram utilizadas quatro fêmeas suínas, adultas, mestiças, não-gestantes e sem sinais clínicos de estro, criadas e mantidas sob condições industriais de criação. Objetivou-se avaliar a ocorrência de ritmicidade biológica circadiana para tiroxina e 17-alfa -OH progesterona. Os ensaios para dosagens hormonais foram executados utilizando-se a técnica de radioimunoensaio (RIE) em fase sólida e para isso foi empregado conjunto de reagentes comerciais (COAT-A-COUNT R). As análises séricas de tiroxina mostraram valores mais elevados ao redor das 15 horas, decrescendo a partir dai até atingir níveis menores no intervalo da zero às 4 horas. Quanto a 17-alfa -OH progesterona, observaram-se níveis mais elevados por volta das 3 horas, decrescendo gradativamente ao longo do dia, até atingir menor concentração no intervalo das 12 às 15 horas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma concentrations of triiodothyronine (T-3) and thyroxine (T-4) in five adult Polwarth-ldeal rams located at latitude 22degrees51 'S and longitude 48degrees26'W were evaluated every 2 months for 1 year (June, August, October, December, February, April). Blood collections were made at 2 h intervals for 24 h in each month, and hormone determinations were by radioimmunoassay. Means of T-3 (97.52 +/- 21.45 ng/dL) and T-4 (4.30 +/- 0.94 mug/dL) varied in peaks throughout the 24 h period with the highest concentrations occurring in the afternoon (16:30 and 14:30 h, respectively), and throughout the year where the highest levels were during months of long daylengths (October, December, February). Results suggest circadian and circannual rhythms in thyroid hormone secretion may be present in rams kept relatively close to the equator. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)