998 resultados para Cimento portland - Indústria - História - 1926-1987


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portland cement being very common construction material has in its composition the natural gypsum. To decrease the costs of manufacturing, the cement industry is substituting the gypsum in its composition by small quantities of phosphogypsum, which is the residue generated by the production of fertilizers and consists essentially of calcium dihydrate and some impurities, such as fluoride, metals in general, and radionuclides. Currently, tons of phosphogypsum are stored in the open air near the fertilizer industries, causing contamination of the environment. The 226 Ra present in these materials, when undergoes radioactive decay, produces the 222Rn gas. This radioactive gas, when inhaled together with its decay products deposited in the lungs, produces the exposure to radiation and can be a potential cause of lung cancer. Thus, the objective of this study was to measure the concentration levels of 222Rn from cylindrical samples of Portland cement, gypsum and phosphogypsum mortar from the state of Paraná, as well as characterizer the material and estimate the radon concentration in an environment of hypothetical dwelling with walls covered by such materials. Experimental setup of 222Rn activity measurements was based on AlphaGUARD detector (Saphymo GmbH). The qualitative and quantitative analysis was performed by gamma spectrometry and EDXRF with Au and Ag targets tubes (AMPTEK), and Mo target (ARTAX) and mechanical testing with x- ray equipment (Gilardoni) and the mechanical press (EMIC). Obtained average values of radon activity from studied materials in the air of containers were of 854 ± 23 Bq/m3, 60,0 ± 7,2 Bq/m3 e 52,9 ± 5,4 Bq/m3 for Portland cement, gypsum and phosphogypsum mortar, respectively. These results extrapolated into the volume of hypothetical dwelling of 36 m3 with the walls covered by such materials were of 3366 ± 91 Bq/m3, 237 ± 28 Bq/m3 e 208 ± 21 Bq/m3for Portland cement, gypsum and phosphogypsum mortar, respectively. Considering the limit of 300 Bq/m3 established by the ICRP, it could be concluded that the use of Portland cement plaster in dwellings is not secure and requires some specific mitigation procedure. Using the results of gamma spectrometry there were calculated the values of radium equivalent activity concentrations (Raeq) for Portland cement, gypsum and phosphogypsum mortar, which were obtained equal to 78,2 ± 0,9 Bq/kg; 58,2 ± 0,9 Bq/kg e 68,2 ± 0,9 Bq/kg, respectively. All values of radium equivalent activity concentrations for studied samples are below the maximum level of 370 Bq/kg. The qualitative and quantitative analysis of EDXRF spectra obtained with studied mortar samples allowed to evaluate quantitate and the elements that constitute the material such as Ca, S, Fe, and others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major current challenges for oilwell companies is the extraction of oil from evaporitic zones, also known as pre-salt basins. Deep reservoirs are found under thick salt layers formed from the evaporation of sea water. Salt layers seal the flow of oil from underneath rock formations, which store hydrocarbons and increase the probability of success in oil and gas exploration. Oilwells are cemented using Portland-based slurries to promote mechanical stability and zonal isolation. For pre-salt oilwells, NaCl must be added to saturate the cement slurries, however, the presence of salt in the composition of slurries affects their overall behavior. Therefore, the objective of the present study was to evaluate the effect of the addition of 5 to 25% NaCl on selected properties of Portland-based slurries. A series of tests were carried out to assess the rheological behavior, thickening time, free water and ultrassonic compressive strength. In addition, the slurries were also characterized by thermal analysis, X ray diffraction and scanning electron microscopy. The results showed that the addition of NaCl affected the thickening time of the slurries. NaCl contents up to 10% shortened the thickening time of the slurries. On the other hand, concentrations in excess of 20% not only extended the thickening time, but also reduced the strength of hardened slurries. The addition of NaCl resulted in the formation of a different crystalline phase called Friedel´s salt, where free chlorine is bonded to tricalcium aluminate

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os betões atuais são materiais com custos extremamente competitivos devido ao baixo custo do cimento Portland. Contudo, os elevados níveis de emissões de C02 gerados na sua produção provocam o aumento do custo final do produto, tanto económico como ambiental. Devido a esta situação algumas adições têm sido estudadas como alternativas para substituir parcialmente os conteúdos de cimento no fabrico de betão. Uma vez que existem grandes quantidades de pó de mármore inutilizadas na região de Évora decidiu-se avaliar o seu comportamento. O pó de mármore foi adicionado em certas percentagens de forma a reduzir os conteúdos de cimento, permitindo avaliar se este iria manter e/ou melhorar as características de resistência à compressão e trabalhabilidade do betão. Além de avaliado o comportamento desta adição, o mesmo foi também comparado com a adição de filer calcário nas mesmas percentagens. Os resultados obtidos demonstraram a exequibilidade da utilização de ambas as adições. ABSTRACT: Concretes currently used in construction are materials with very competitive costs due to the low cost of Portland cement. However, high levels of C02 emissions generated in its production cause an increase of the final cost of the product, both economically and environmentally. Due to this situation, some additions have been studied as alternatives to replace partially cement contents in concrete production. Since there are large quantities of marble dust in the region of Évora, it was decided to evaluate his behavior. The marble dust was added in known percentages so the cement contents could be reduced, allowing evaluating if it will maintain and/or improve the characteristics of the compressive strength and workability of the concrete. ln addition to evaluating the behavior of marble dust, this addition was also compared with the addition of limestone filler in the same percentages. The results demonstrated the feasibility of using both additions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Busca demonstrar como a indústria do cimento no Brasil foi implantada, analisando os recursos necessários à produção do cimento. Aborda a história da Indústria e sua evolução baseada nas suas principais estatísticas.Examina o processo tecnológico no setor e a criação de barreiras à entrada que acabam por transformar o setor num mercado oligopólico. Analisa ainda o capital estrangeiro na indústria e o relacionamento desta com o Estado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A indústria de concreto é uma grande consumidora de recursos naturais, seja para a produção de agregados, ou para a produção de cimento Portland, onde grandes quantidades de calcário são extraídas. Além disso, a indústria do cimento tem uma grande contribuição na emissão de gases responsáveis pelo efeito estufa, portanto iniciativas que busquem reduzir o consumo de cimento nos concretos são importantes para a sustentabilidade das construções. Este trabalho avalia parâmetros de durabilidade de concretos autoadensáveis (CAA) com baixo consumo de cimento e elevados teores de cinza volante e metacaulim, com e sem a adição de cal, em comparação a dois concretos sem adições. Foram avaliados CAA com consumos de cimento entre 150 e 200 kg por m3 de concreto. Os ensaios realizados foram de resistividade, difusão de íons cloreto (LNEC E-463/2004), carbonatação acelerada e absorção por capilaridade. Os resultados demonstram a aptidão em produzir CAA com misturas terciárias e quaternárias com baixo consumo e que atendam as resistências correntes aos 28 dias (30 a 40 MPa), proporcionando ainda ganhos acentuados na durabilidade e elevadas resistências aos 90 dias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is to study the characteristics and technological properties of soil-cement bricks made from binary and ternary mixtures of Portland cement, sand, water, with or without addition of gravel from the drilling of oil wells, which could be used by industry, aiming to improve its performance and reduce cost by using the residue and, consequently, increasing its useful life. The soil-cement bricks are one of the alternatives to masonry construction. These elements, after a short curing period, provide compressive strength similar to that of solid bricks and ceramic blocks, and the higher the resistance the higher the amount of cement used. We used the soil from the city of São José do Mipibu / RN, the banks of the River Baldun, cement CPIIZ-32 and residue of drill cuttings from oil wells drilling onshore wells in the town of Mossley, RN, provided Petrobras. To determine the optimum mix, we studied the inclusion of different residues (100%, 80%, 70%, 60% and 50%) where 15 bodies were made of the test piece. The assessment was made of bricks made from simple compression tests, mass loss by immersion and water absorption. The experimental results proved the efficiency and high utilization of the waste from the drilling of oil wells, making the brick-cement-soil residue with a higher strength and lower water absorption. The best result in terms of mechanical strength and water absorption for the ternary mixture was 10% soil, 14% cement and 80% residue. In terms of binary mixtures, we obtained the best result for the mix-cement residue, which was 14% cement incorporated in the residue

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil e Ambiental - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for a more aware use of available raw materials has led to a need to create more sustainable products. The use of natural fibers to reinforce cement, for instance, has been widely studied in the past decades because of the possibility that they can improve material properties such as thermal resistance and to compression, besides conferring a decrease in their total weight. This present study aimed at to conduct preliminary studies on the thermal resistance of the composite cement - Cellulose Pulp, using waste from the pulp and paper industry. Through experiments, it was found that the composite manufactured using the ratio 30 % Portland cement and 70 % pulp, showed satisfactory results regarding its thermal resistance, so it could be considered as a potential thermal insulation material, for use in constructions