84 resultados para Cholecystokinin
Resumo:
Background: n-3 Polyunsaturated fatty acids (PUFAs) have proven benefits for both the development of atherosclerosis and inflammatory conditions. The effects on atherosclerosis may be partly mediated by the observed reduction in fasting and postprandial triacylglycerol concentrations after both acute and chronic n-3 PUFA ingestion. Objective: The aim of this study was to assess gastric emptying and gastrointestinal hormone release after the consumption of mixed meals rich in n-3 PUFAs or other classes of fatty acids. Design: Ten healthy women (aged 50–62 y) completed 4 separate study visits in a single-blind, randomized design. On each occasion, subjects consumed 40 g oil rich in either saturated fatty acids, monounsaturated fatty acids, n-6 PUFAs, or n-3 PUFAs as part of a mixed meal. [1-13C]Octanoic acid (100 mg) was added to each oil. Gastric emptying was assessed by a labeled octanoic acid breath test, and concentrations of gastrointestinal hormones and plasma lipids were measured. Results: Recovery of 13C in breath was enhanced after n-3 PUFA ingestion (P < 0.005). The cholecystokinin response after the n-3 PUFA meal was significantly delayed (P < 0.001), and the glucagon-like peptide 1 response was significantly reduced (P < 0.05). Conclusion: The inclusion of n-3 PUFAs in a meal alters the gastric emptying rate, potentially as the result of changes in the pattern of cholecystokinin and glucagon-like peptide 1 release.
Resumo:
The present study was carried out to determine whether cephalic stimulation, associated with eating a meal, was sufficient stimulus to provoke the release of stored triacylglycerol (TAG) from a previous high-fat meal. Ten subjects were studied on three separate occasions. Following a 12 h overnight fast, subjects were given a standard mixed test meal which contained 56 g fat. Blood samples were taken before the meal and for 5 h after the meal when the subjects were randomly allocated to receive either water (control) or were modified sham fed a low-fat (6 g fat) or moderate-fat (38 g fat) meal. Blood samples were collected for a further 3 h. Compared with the control, modified sham feeding a low- or moderate-fat meal did not provoke an early entry of TAG, analysed in either plasma or TAG-rich lipoprotein (TRL) fraction (density ,1´006 kg/l). The TRL-retinyl ester data showed similar findings. A cephalic phase secretion of pancreatic polypeptide, without a significant increase in cholecystokinin levels, was observed on modified sham feeding. Although these data indicate that modified sham feeding was carried out successfully, analysis of the fat content of the expectorant showed that our subjects may have accidentally ingested a small amount of fat (0´7 g for the low-fat meal and 2´4 g for the moderate-fat meal). Nevertheless, an early TAG peak following modified sham feeding was not demonstrated in the present study, suggesting that significant ingestion of food, and not just orosensory stimulation, is necessary to provoke the release of any TAG stored from a previous meal.
Resumo:
The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.
Resumo:
The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Water and NaCl intake is strongly inhibited by the activation of alpha(2)-adrenergic receptors with clonidine or moxonidine (alpha(2)-adrenergic/imidazoline agonists) injected peripherally or into the forebrain and by serotonin and cholecystokinin in the lateral parabrachial nucleus (LPBN). Considering that alpha(2)-adrenergic receptors exist in the LPBN and the similar origin of serotonergic and adrenergic afferent pathways to the LPBN, in this study we investigated the effects of bilateral injections of moxonidine alone or combined with RX 821002 (alpha(2)- adrenergic antagonist) into the LPBN on 1.8% NaCl and water intake induced by the treatment with s.c. furosemide (10 mg/kg)+captopril (5 mg/kg). Additionally, we investigated if moxonidine into the LPBN would modify furosemide+captopril-induced c-fos expression in the forebrain. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were used. Contrary to forebrain injections, bilateral LPBN injections of moxonidine (0.1, 0.5 and 1 nmol/0.2 mul) strongly increased furosemide+captopril-induced 1.8% NaCl intake (16.6 +/- 2.7, 44.5 +/- 3.2 and 44.5 +/- 4.3 ml/2 h, respectively, vs. vehicle: 6.9 +/- 1.5 ml/2 h). Only the high dose of moxonidine increased water intake (23.3 +/- 3.8 ml/2 h, vs. vehicle: 12.1 +/- 2.6 ml/2 h). Prior injections of RX 821002 (10 and 20 nmol/0.2 mu1) abolished the effect of moxonidine (0.5 nmol) on 1.8% NaCl intake. Moxonidine into the LPBN did not modify furosemide+captopril-induced c-fos expression in forebrain areas related to the control of fluid-electrolyte balance. The results show that the activation of LPBN a2-adrenergic receptors enhances furosemide+captopril-induced 1.8% NaCl and water intake. This enhancement was not related to prior alteration in the activity of forebrain areas as suggested by c-fos expression. Previous and present results indicate opposite roles for alpha(2-)adrenergic receptors in the control of sodium and water intake according to their distribution in the rat brain. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl - denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH 2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal(acetilcholine),endocrinal(gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.
Resumo:
Molecular neurobiology has provided an explanation of mechanisms supporting mental functions as learning, memory, emotion and consciousness. However, an explanatory gap remains between two levels of description: molecular mechanisms determining cellular and tissue functions, and cognitive functions. In this paper we review molecular and cellular mechanisms that determine brain activity, and then hypothetize about their relation with cognition and consciousness. The brain is conceived of as a dynamic system that exchanges information with the whole body and the environment. Three explanatory hypotheses are presented, stating that: a) brain tissue function is coordinated by macromolecules controlling ion movements, b) structured (amplitude, frequency and phase-modulated) local field potentials generated by organized ionic movement embody cognitive information patterns, and c) conscious episodes are constructed by a large-scale mechanism that uses oscillatory synchrony to integrate local field patterns. © by São Paulo State University.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: The study goal was to compare the efficacy of expressed breast milk (EBM) versus 25% glucose on pain responses of late preterm infants during heel lancing. METHODS: In a noninferiority randomized controlled trial, a total of 113 newborns were randomized to receive EBM (experimental group [EG]) or 25% glucose (control group [CG]) before undergoing heel lancing. The primary outcome was pain intensity (Premature Infant Pain Profile [PIPP]) and a 10% noninferiority margin was established. Secondary outcomes were incidence of cry and percentage of time spent crying and adverse events. Intention-to-treat (ITT) analysis was used. RESULTS: Groups were similar regarding demographics and clinical characteristics, except for birth weight and weight at data collection day. There were lower pain scores in the CG over 3 minutes after lancing (P<.001). A higher number of infants in the CG had PIPP scores indicative of minimal pain or absence of pain (P = .002 and P = .003 on ITT analysis) at 30 seconds after lancing, and the mean difference in PIPP scores was 3 (95% confidence interval: 1.507-4.483). Lower incidence of cry (P = .001) and shorter duration of crying (P = .014) were observed for CG. Adverse events were benign and self-limited, and there was no significant difference between groups (P = .736 and P = .637 on ITT analysis). CONCLUSIONS: Results based on PIPP scores and crying time indicate poorer effects of EBM compared with 25% glucose during heel lancing. Additional studies exploring the vol and administration of EBM and its combination with other strategies such as skin-to-skin contact and sucking are necessary. Pediatrics 2012;129:664-670
Resumo:
ZusammenfassungIn dieser Arbeit konnte gezeigt werden, dass neben dem Oxytocinrezeptor auch die anderen Rezeptoren der Familie der Neurohypophysenhormone, die Vasopressinrezeptoren, in der gleichen Weise in ihren Bindungseigenschaften von Cholesterin beeinflusst werden. Im Gegensatz dazu zeigt der Cholecystokininrezeptor Typ B keine direkte Wechselwirkung mit Cholesterin. Durch Austausch der Transmembranhelices 6 und 7 des Oxytocinrezeptors mit entsprechenden Bereichen des Cholecystokininrezeptors wurde ein Rezeptor erzeugt, der bezüglich Bindungsverhalten und Cholesterinabhängigkeit keine Unterschiede zu dem Wildtyp-Oxytocinrezeptor zeigte. Durch den Einsatz von computergestütztem 'Modeling' wurde für die Interaktion des Oxytocinrezeptors mit Cholesterin eine Stelle zwischen den Transmembranhelices 5 und 6 vorgeschlagen. Um die Verteilung des Cholesterins in der Zelle zu untersuchen, wurde ein selbst synthetisiertes, fluoreszierendes Cholesterinderivat (Fluochol) eingesetzt. Die Komplexierung in Cyclodextrinen ermöglichte die Einlagerung von Fluochol in die Plasmamembran von Zellen. Der Einstrom des Fluochol in das ER erfolgte innerhalb von Minuten und war energieunabhängig. Schließlich wurde Fluochol in Lipidtröpfchen transportiert, die in fast allen Zellen für die Speicherung überschüssiger intrazellulärer Lipide dienen. Die Tröpfchen werden aus dem endoplasmatischen Retikulum gebildet und enthalten neben Phospholipiden auch Cholesterin, das durch das Enzym ACAT mit langkettigen Fettsäuren verestert wird.
Resumo:
My Doctorate Research has been focused on the evaluation of the pharmacological activity of a natural extract of chestnut wood (ENC) towards the cardiovascular and gastrointestinal system and on the identification of the active compounds. The ENC has been shown to contain more than 10% (w/w) of phenolic compounds, of which tannins as Vescalgin and Castalgin are the more representative. ENC cardiovascular effects have been investigated in guinea pig cardiac preparations; furthermore its activity has been evalueted in guinea pig aorta strips. ENC induced transient negative chronotropic effect in isolated spontaneously beating right atria and simultaneously positive inotropic effect in left atria driven at 1 Hz. Cardiac cholinergic receptors are not involved in the negative chronotropic effect and positive inotropic effects are not related to adrenergic receptors. In vascular smooth muscle, natural extract of chestnut did not significantly change the contraction induced by potassium (80 mM) or that induced by noradrenaline (1μM). In guinea pig ileum, ENC reduced the maximum response to carbachol in a concentrationdependent manner and behaved as a reversible non competitive antagonist. In guinea pig ileum, the antispasmodic activity of ENC showed a significant antispasmodic activity against a variety of different spasmogenic agents including histamine, KCl, BaCl2. In guinea pig proximal colon, stomach and jejunum, ENC reduced the maximum response to carbachol in a concentrationdependent manner and behaved as a reversible non competitive antagonist. ENC contracted gallbladder guinea pig in a reversible and concentration-dependent manner. This effect does not involve cholinergic and cholecystokinin receptors and it is reduced by nifedipine. ENC relaxed Oddi sphincter smooth muscle. The cholecystokinetic and Oddi sphincter relaxing activities occurred also in guinea pigs fed a lithogenic diet. The cholecystokinetic occurred also in human gallbladder. The Fractionation of the extract led to the identification of the active fraction.
Resumo:
The wild-type cholecystokinin type 2 (CCK(2)) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK(2) receptor with retention of intron 4 (CCK(2)Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK(2) receptor, wild-type CCK(2) receptor and CCK(2)Ri4sv with end-point and real-time RT-PCR, and for total CCK(2) receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK(2) receptor transcripts were found in the vast majority of tumours and normal tissues. CCK(2)Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK(2) receptor negative tumours or any normal tissues tested. CCK(2)Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK(2) receptor transcripts. In conclusion, the CCK(2)Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Resumo:
Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides binding to the CCK2 receptor [selected as part of the COST Action on Targeted Radionuclide Therapy (BM0607)] and to identify major cleavage sites.
Resumo:
Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy (PRRT) may be a viable therapeutic strategy in the management of these patients. Several CCK2R-targeted radiopharmaceuticals have been described in recent years. As part of the European Union COST Action BM0607 we studied the in vitro and in vivo characteristics of 12 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated CCK2R binding peptides. In the present study, we analysed binding and internalization characteristics. Stability, biodistribution and imaging studies have been performed in parallel by other centres involved in the project.