940 resultados para Chloride concentration profiles
Resumo:
Chloride-induced corrosion of steel in concrete is one of most important durability and safety concern for reinforced concrete structures. To study chloride ingress into concrete is thus very important. However, most of the researchers focus on the studying chloride ingress through concrete samples without any loading. In reality concrete structures are subjected to different kinds of loads and therefore studying the effect of such loads on chloride transport is critical. In this work, 28 different concrete mixes were subjected to three levels of compressive load (0%, 50% and 75% of compressive failure load – f) for 24 hours. Further to unloading, these samples were subjected to non-steady state chloride diffusion test as per NT Build 443. The results were compared against the diffusion coefficient obtained for concrete samples that had no previous loading. D value for concretes subjected to 75% f showed a significant increase compared to 0% loading condition, but the increase was insignificant for 50% f. The results indicate that the influence of concrete mixes variables on D is more significant than that of loading level. Surface chloride concentration also increased with the loading level, which might be due to the increased concrete surface area caused by micro cracking.
Resumo:
Carbon monoxide (CO) concentration data from 1999–2006, monitored at 5 different pollution stations in a high-rise mega city (Hong Kong), were collected and investigated. The spatio-temporal characteristics of urban CO concentration profiles were obtained. A new approach was put forward to examine the relationship between urban CO concentration and different wind flow patterns. Rather than relying on the meteorological data from a single weather station, usually adopted in previous studies, four weather stations on the boundary of Hong Kong territory were used in the present study so as to identify 16 different wind flow patterns, among which a typical urban heat island circulation (UHIC) can be distinguished. Higher concentrations were observed to be associated with the flow pattern of an inflow from Lau Fau Shan (LFS) station which is located in the northwest of Hong Kong. This suggests that the ability of dilution for north-to-west wind is relatively weak due to the pollutants carried from outside Hong Kong. The effectiveness of wind speed on the alleviation of urban concentration is dependent on the initial concentration of the approaching wind. The increase of wind speed of north-to-west wind from 0 m/s to 6 m/s has little effect on the reduction of urban CO concentration, especially on the non-roadside stations. By contrast, for the southerly marine wind, pollution concentration decreases sharply with an increase in the wind speed. It was also found that urban heat island circulation (UHIC) is conducive of the accumulation of pollutants, especially at night. There exists a positive correlation between CO concentration and UHI intensity. This correlation is much stronger at night compared to during the day. Keywords: urban pollution monitoring, urban ventilation pattern, urban heat island circulation, mega city
Resumo:
The mass transfer during osmotic dehydration of apple slices immersed in 40, 50 and 60% (w/w) aqueous sucrose solutions was investigated to evaluate the influence of solution concentration on diffusivities. In the mathematical model, the diffusion coefficients were functions of the local water and sucrose concentration. The mass transfer equations were, simultaneously, solved for water and sucrose using an implicit numerical method. Material coordinates following the shrinkage of the solid were used. The predicted concentration profiles were integrated and compared to experimental data, showing a reasonable agreement with the measured data. on average, the effective diffusion coefficients for water and sucrose decreased as the osmotic solution concentration increased; that is the behavior of the binary coefficients in water-sucrose solutions. However, the diffusivities expressed as a function of the local concentration in the slices varied between the treatments. Water diffusion coefficients showed a remarkable variation throughout the slice and unusual behavior, which was associated to the cellular structure changes observed in tissue immersed in osmotic solutions. Cell structure changes occurred in different ways: moderate plasmolysis at 40%, accentuated plasmolysis at 50% and generalized damage of the cells at 60%. Intact vacuoles were observed after a long time of exposure (30 h) to 40 and 50% solutions. Effects of the concentration on tissue changes make it difficult to generalize the behavior of diffusion coefficients.
Resumo:
The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO(2) thin-film electrode biased at current density from 5 to 50 mA cm(-2) and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L(-1), pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L(-1) at a pH of 4 and a current density of 30 mA cm(-2). The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N=3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L(-1) NaCl and 50 mu g L(-1) of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of -0.260 min(-1), suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections. (C) 2008 Elsevier Ltd. All rights reserved.
Evaluation of water and sucrose diffusion coefficients in potato tissue during osmotic concentration
Resumo:
The water and sucrose effective diffusion coefficients behavior were studied in potato tubers immersed in aqueous sucrose solution, 50% (w/,A), at 27 degreesC. Water and sucrose concentration profiles were measured as function of the position for 3, 6 and 12 h of immersion. These were adjusted to a mathematical model for three components that take into account the bulk flow in a shrinking tissue and the concentration dependence of the diffusion coefficients.The binary effective coefficients were an order of magnitude lower than those for pure solutions of sucrose. These coefficients show an unusual concentration dependence. Analysis of these coefficients as functions of the concentration and position demonstrates that, cellular tissue promotes high resistance to diffusion in the tuber and also the elastic contraction of material influences the species diffusion. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Channel catfish ponds are treated with salt (sodium chloride) to increase chloride concentration and prevent nitrite toxicity in fish. A survey indicated that most farmers try to maintain chloride concentration of 50 to 100 mg/L in ponds by annual salt applications. Averages and standard deviations for selected water quality variables in salt-treated ponds were as follows: chloride, 87.2 ± 37.5 mg/L; total dissolved solids (TDS), 336 ± 96 mg/L; specific conductance, 512 ± 164 μmhos/cm. Maximum values were 189 mg/L for chloride, 481 mg/L for TDS, and 825 μmhos/cm for specific conductance. Good correlations between specific conductance values and both chloride and TDS concentrations suggest that specific conductance can be a rapid method for estimating concentrations of these two variables in surface water. The maximum limit for chloride concentration in Alabama streams allowed by the Alabama Department of Environmental Management is 230 mg/L. The usual recommended upper limit of TDS for protection of aquatic life in freshwater streams is 1,000 mg/L. Based on the observed relationship between TDS concentration and specific conductance in Alabama catfish ponds, 1,000 mg/L TDS corresponds to 1,733 μmhos/cm specific conductance. It is unlikely that effluents from salt-treated catfish ponds would violate the in-stream chloride standard of 230 mg/L or harm aquatic life in streams. Nevertheless, chloride concentrations in ponds should be measured before salt application as a safe guard against excessive salt application and chloride concentrations above the in-stream chloride standard.
Resumo:
Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of chloride on the electrodeposition of lead films and their dissolution in anodic stripping voltammetric experiments was examined. Gold substrates were plated with lead films, and mass changes were monitored by using the electrochemical quartz crystal microbalance with dissipation factor (EQCM-D). The results showed that the amount of electrodeposited lead is slightly dependent on the chloride concentration. The charge/mass ratio data indicated the presence of Pb(I) and Pb(II) as a result of film dissolution, and the precipitation and deposition of PbCl2 onto the electrode surface. Scanning electron microscopy images revealed that the morphology of the lead film was strongly influenced by chloride present in the plating solution and that much rougher films were obtained in comparison with those obtained in the absence of chloride. The rate of the anodic dissolution was higher for lead films with higher surface areas, which lead to an increase in their stripping voltammetric currents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Structural durability is an important criterion that must be evaluated for every type of structure. Concerning reinforced concrete members, chloride diffusion process is widely used to evaluate durability, especially when these structures are constructed in aggressive atmospheres. The chloride ingress triggers the corrosion of reinforcements; therefore, by modelling this phenomenon, the corrosion process can be better evaluated as well as the structural durability. The corrosion begins when a threshold level of chloride concentration is reached at the steel bars of reinforcements. Despite the robustness of several models proposed in literature, deterministic approaches fail to predict accurately the corrosion time initiation due the inherent randomness observed in this process. In this regard, structural durability can be more realistically represented using probabilistic approaches. This paper addresses the analyses of probabilistic corrosion time initiation in reinforced concrete structures exposed to chloride penetration. The chloride penetration is modelled using the Fick's diffusion law. This law simulates the chloride diffusion process considering time-dependent effects. The probability of failure is calculated using Monte Carlo simulation and the first order reliability method, with a direct coupling approach. Some examples are considered in order to study these phenomena. Moreover, a simplified method is proposed to determine optimal values for concrete cover.
Resumo:
Selective flocculation and dispersion processes rely on differences in the surface chemistry of fine mineral particles (<25 >ìm) to allow for the concentration of specific minerals from an ore body. The effectiveness of selective flocculation and dispersion processes for the concentration of hematite (Fe2O3) ore are strongly dependent on the ionic content of the process water. The goal of this research was to analyze the ionic content of an operating selective flocculation and dispersion type hematite ore concentrator and determine how carbon dioxide affects the filtration of the final product. A detailed water chemistry analysis of the entire process was determined to show concentration profiles throughout the process. This information was used to explain process phenomena and promote future research into this subject. A subsequent laboratory study was conducted to show how carbon dioxide affects filtration rate and relate this effect to the zeta potential of the constituents of the concentrated hematite ore.
Resumo:
We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0-25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0-25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (> 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0-25 cmbsf, were observed on the shelf (70-253 m, 0.06-0.1 and 0.5-4.7 mmol m-2 d-1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m-2 d-1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production), both of which support the supply of methanogenic substrates. A negative correlation of methanogenesis rates with dissolved oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might be advantageous for methanogenic organisms at the sediment-water interface. Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 105. In addition, methane concentration profiles indicate a partial release of surface methane into the water column as well as a partial consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfate-methane transition zone.
Resumo:
Iodine and boron were analyzed in pore fluids, serpentinized ultramafic clasts, and the serpentinized mud matrix of the South Chamorro Seamount mud volcano (Ocean Drilling Program Leg 195 Site 1200) to determine the distribution of these elements in deep forearc settings. Similar analyses of clasts and muds from the Conical Seamount mud volcano (Leg 125 Site 779) were also carried out. Interstitial pore fluids are enriched in boron and iodine without appreciable change in chloride concentration relative to seawater. Both the ultramafic clasts and the associated serpentinized mud present the highest documented iodine concentrations for all types of nonsedimentary rocks (6.3-101.7 µmol/kg). Such high iodine concentrations, if commonplace in marine forearc settings, may constitute a significant, previously unknown reservoir of iodine. This serpentinized forearc mantle reservoir may potentially contribute to the total crustal iodine budget and provide a mechanism for its recycling at convergent plate margins. Both clasts and mud show concurrent enrichments in boron and iodine, and the similarity in pore fluid profiles also suggests that these two incompatible, fluid-mobile elements behave similarly at convergent plate margins.
Resumo:
Pore fluid chlorinity lower than seawater is often observed in accretionary wedges and one of the possible causes of pore water freshening is the smectite to illite reaction. This reaction occurs during diagenesis in the 80-150°C temperature range. Low chlorinity anomalies observed at the toe of accretionary wedges have thus been interpreted as evidence for lateral fluid migration from inner parts of the wedge and the seismogenic zone. However, temperature conditions in Nankai Trough are locally high enough for the smectite to illite transition to occur in situ. Cation exchange capacity is here used as a proxy for smectite content in the sediment and the amount of interlayer water released during the smectite to illite reaction represents in average 12 water molecules per cation charge. Water and chloride budget calculations show that there is enough smectite to explain the chlorinity anomalies by in situ reactions. The shape of the pore fluid chlorinity profiles can be explained if compaction is also taken into account in the model. Lateral flow is not needed. This argument, based solely on chloride concentration, does not imply that lateral flow is absent. However, previous estimations of lateral fluid fluxes, and of the duration of transient flow events along the de.collement, should be reconsidered.
Resumo:
Two distinct hydrogeochemical regimes currently dominate the Peruvian continental margin. One, in shallower water (150-450 m) shelf to upper-slope regions, is characterized by interstitial waters with strong positive chloride gradients with depth. The maximum measured value of 1043 mM chloride at Site 680 at ITS corresponds to a degree of seawater evaporation of ~2 times. Major ion chemistry and strontioum isotopic composition of the interstitial waters suggest that a subsurface brine that has a marine origin and is of pre-early Miocene "age," profoundly influences the chemistry and diagenesis of this shelf environment. Site 684 at ~9°S must be closest to the source of this brine, which becomes diluted with seawater and/or interstitial water as it flows southward toward Site 686 at ~13?S (and probably beyond) at a rate of approximately 3 to 4 cm/yr, since early Miocene time. The other regime, in deep water (3000-5000 m) middle to lower-slope regions, is characterized by interstitial waters with steep negative and nonsteady-state chloride gradients with depth. The minimum measured value of 454 mM chloride, at Site 683 at ITS, corresponds to ~20% dilution of seawater chloride The most probably sources of these low-chloride fluids are gas hydrate dissociation and mineral (particularly clay) dehydration reactions. Fluid advection is consistent with (1) the extent of dilution shown in the chloride profiles, (2) the striking nonsteady-state depth profiles of chlorides at Sites 683 and 688 and of 87Sr/86Sr ratios at Site 685, and (3) the temperatures resulting from an average geothermal gradient of 50°C/km and required for clay mineral dehydration reactions. Strontium isotope data reveal two separate fluid regimes in this slope region: a more northerly one at Sites 683 and 685 that is influenced by fluids with a radiogenic continental strontium signature, and a southerly one at Sites 682 and 688 that is influenced by fluids with a nonradiogenic oceanic signatures. Stratigraphically controlled fluid migration seems to prevail in this margin. Because of its special tectonic setting, Site 679 at ITS is geochemically distinct. The interstitial waters are characterized by seawater chloride concentrations to -200 mbsf and deeper by a significantly lower chloride concentration of about two-thirds of the value in seawater, suggesting mixing with a meteoric water source. Regardless of the hydrogeochemical regime, the chemistry and isotopic compositions of the interstitial waters at all sites are markedly modified by diagenesis, particularly by calcite and dolomite crystallization.