58 resultados para Chemosensitivity
Resumo:
The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The ingestion of a meal evokes a series of digestive processes, which consist of the essential functions of the digestive system: food transport, secretory activity, absorption of nutrients and the expulsion of undigested residues do not absorbed. The gastrointestinal chemosensitivity is characterized by cellular elements of the endocrine gastrointestinal mucosa and nerve fibers, in particular of vagal nature. A wide range of mediators endocrine and/or paracrine can be released from various endocrine cells in response to nutrients in the diet. These hormones, in addition to their direct activity, act through specific receptors activating some of the most important functions in the control of energy intake and energy homeostasis in the body. For integration of this complex system of control of gastrointestinal chemosensitivity, recent evidence demonstrates the presence of taste receptors (TR) belonging to the family of G proteins coupled receptor expressed in the mucosa of the gastrointestinal tract of different mammals and human. This thesis is divided into several research projects that have been conceived in order to clarify the relationship between TR and nutrients. To define this relationship I have used various scientific approaches, which have gone on to evaluate changes in signal molecules of TR, in particular of the α-transducin in the fasting state and after refeeding with standard diet in the gastrointestinal tract of the pig, the mapping of the same molecule signal in the gastrointestinal tract of fish (Dicentrarchus labrax), the signaling pathway of bitter TR in the STC-1 endocrine cell line and finally the involvement of bitter TR in particular of T2R38 in patients with an excessive caloric intake. The results showed how there is a close correlation between nutrients, TR and hormonal release and how they are useful both in taste perception but also likely to be involved in chronic diseases such as obesity.
Resumo:
Die mittlere Überlebenszeit nach Erkennung eines Glioblastoms ohne Behandlung liegt bei 3 Monaten und kann durch die Behandlung mit Temozolomid (TMZ) auf etwa 15 Monate gesteigert werden. Neben TMZ sind die chlorethylierenden Nitrosoharnstoffe die meistversprechendsten und am häufigsten eingesetzten Chemotherapeutika in der Gliomtherapie. Hier liegt die mittlere Überlebenszeit bei 17,3 Monaten. Um die Therapie des Glioblastoms noch effektiver zu gestalten und Resistenzen zu begegnen, werden unterschiedlichste Ansätze untersucht. Eine zentrale Rolle spielen hierbei das activator protein 1 (AP-1) und die mitogen aktivierten Proteinkinasen (MAPK), deren Funktion in bisherigen Arbeiten noch unzureichend beleuchtet wurde.rnBesonders mit der Rolle des AP-1-bildenden Proteins FRA-1 in der Therapie des Glioblastoms haben sich bisher nur wenige Arbeiten beschäftigt, weshalb im ersten Teil der vorliegenden Arbeit dessen Funktion in der Regulation der Chemosensitivität gegenüber dem chlorethylierenden Agenz ACNU genauer untersucht wurde. Es konnte gezeigt werden, dass die FRA 1-Expression durch Behandlung mit ACNU induziert wird. Die Induktion erfolgte über die beiden MAPKs ERK1/2 und p38K. JNK hatte keinen Einfluss auf die Induktion. Durch die Herunterregulation der FRA-1-Expression mit Hilfe von siRNA und eines shRNA exprimierenden Plasmids kam es zu einer signifikanten Sensitivierung gegenüber ACNU. Dabei konnte gezeigt werden, dass die Herunterregulation der FRA-1-Expression in einer verminderten AP 1-Bildung, bedingt durch eine reduzierte Menge an FRA-1 im AP-1-Komplex resultiert. Die Sensitivierung gegenüber ACNU ist weder durch eine Veränderung in der DNA-Reparatur, noch in der Modulation der FAS-Ligand- bzw. FAS-Rezeptor-Expression bedingt. Auch die hier untersuchten BCL 2-Familienmitglieder wiesen keine Unterschiede in der Expression durch Modulation der FRA 1-Expression auf. Allerdings kam es durch die verminderte FRA-1-Expression zu einer Reduktion der Zellzahl in der G2/M-Phase nach Behandlung mit ACNU. Diese ging einher mit einer reduzierten Menge an phosphoryliertem und unphosphoryliertem CHK1, weshalb davon auszugehen ist, dass FRA 1 nach ACNU-Behandlung in Gliomzellen vor der Apoptose schützt, indem es modulierend auf die Zellzykluskontrolle einwirkt.rnIm zweiten Teil dieser Arbeit wurde die Regulation der apoptotischen Antwort nach Behandlung mit ACNU und TMZ genauer beleuchtet, wobei ein spezielles Augen¬merk auf AP 1 und die MAPKs gelegt wurde. Hier konnte gezeigt werden, dass die Apoptose nach Behandlung mit ACNU bzw. TMZ sowohl durch Spaltung von Pro-Caspase 8, als auch Pro-Caspase 9 eingeleitet wird. Dabei akkumulierte in beiden Fällen p53 vermehrt im Zellkern. Eine Inhibierung der transkriptionellen Aktivität von p53 führte nach ACNU-Behandlung zu einer Sensitivierung der Zellen, nach TMZ-Behandlung kam es zu einem leichten Anstieg in der Vitälität. Der FAS-Rezeptor wurde nach ACNU- und nach TMZ-Behandlung aktiviert und auch die DNA-Reparaturproteine DDB2 und XPC wurden in beiden Fällen vermehrt exprimiert. Für die MAPKs JNK und ERK1/2 konnte gezeigt werden, dass diese pro-apoptotisch wirken. Die AP-1-Bildung nach ACNU-Behandlung erfolgte bereits nach 24 h und war von langer Dauer, wohingegen nach TMZ-Behandlung nur eine transiente AP 1-Bildung zu relativ späten Zeitpunkten detektiert werden konnte. Ebenso konnte für das AP-1-Zielgen FAS-Ligand nach ACNU-Behandlung eine relativ schnelle, lang anhaltende Aktivierung detektiert werden, wohingegen nach TMZ-Behandlung zu einem späten Zeitpunkt ein kurzer Anstieg im Signal zu verzeichnen war. In späteren Experimenten konnte gezeigt werden, dass das BCL-2-Familienmitglied BIM eine zentrale Rolle in der Regulation des intrinsischen Apoptosesignalweges nach Behandlung mit ACNU und TMZ spielt. Die hier entstanden Ergebnisse tragen entscheidend zum Verständnis der durch diese beiden Agenzien gesteuerten, apoptotischen Signalwege bei und bieten eine fundierte Grundlage für weitere Untersuchungen.rn
Resumo:
Adrenocortical tumors are rare in children and present with variable signs depending on the type of hormone excess. We herein describe the unusual presentation of a child with adrenocortical tumor and introduce the concept of in vitro chemosensitivity testing. CASE REPORT: A 10.5-year-old girl presented with hypertrichosis/hirsutism and weight loss. The weight loss and behavioral problems, associated with halted puberty and growth, led to the initial diagnosis of anorexia nervosa. However, subsequent weight gain but persisting arrest in growth and puberty and the appearance of central fat distribution prompted further evaluation. RESULTS AND FOLLOW-UP: 24h-urine free cortisol was elevated. Morning plasma ACTH was undetectable, while cortisol was elevated and circadian rhythmicity was absent. Thus a hormonally active adrenal cortical tumor (ACT) was suspected. On magnetic resonance imaging (MRI) a unilateral, encapsulated tumor was found which was subsequently removed surgically. Tissue was investigated histologically and for chemosensitivity in primary cell cultures. Although there were some risk factors for malignancy, the tumor was found to be a typical adenoma. Despite this histology, tumor cells survived in culture and were sensitive to cisplatin in combination with gemcitabine or paclitaxel. At surgery, the patient was started on hydrocortisone replacement which was unsuccessfully tapered over 3 months. Full recovery of the hypothalamus-pituitary-adrenal axis occurred only after 3 years. CONCLUSIONS: The diagnosis of a hormonally active adrenocortical tumor is often delayed because of atypical presentation. Cortisol replacement following unilateral tumor excision is mandatory and may be required for months or years. Individualized chemosensitivity studies carried out on primary cultures established from the tumor tissue itself may provide a tool in evaluating the effectiveness of chemotherapeutic drugs in the event that the adrenocortical tumor may prove to be carcinoma.
Resumo:
Invasive lobular carcinoma (ILC) is the second most common type of breast cancer after invasive ductal carcinoma (IDC). It is characterized by unique clinical, biological and molecular properties. ILC is almost always positive for the estrogen receptor and is typically of a lower grade compared with IDC. We have reviewed selected literature on preoperative (neoadjuvant) and adjuvant systemic therapy of breast cancer focusing on the differential therapy of ILC. Despite the importance of this type of breast cancer, information about its specific treatment is sparse, in particular with regard to adjuvant systemic chemotherapy. ILC has significantly lower rates of response to neoadjuvant chemotherapy compared with IDC; however, the low chemosensitivity seems not to result in a survival disadvantage. Adjuvant hormonal therapy studies do not distinguish between ILC and IDC. Thus, recommendations about endocrine therapies are made using the same criteria as for IDC.
Resumo:
Chemotherapeutic drugs kill cancer cells, but it is unclear why this happens in responding patients but not in non-responders. Proteomic profiles of patients with oesophageal adenocarcinoma may be helpful in predicting response and selecting more effective treatment strategies. In this study, pretherapeutic oesophageal adenocarcinoma biopsies were analysed for proteomic changes associated with response to chemotherapy by MALDI imaging mass spectrometry. Resulting candidate proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated for functional relevance in vitro. Clinical impact was validated in pretherapeutic biopsies from an independent patient cohort. Studies on the incidence of these defects in other solid tumours were included. We discovered that clinical response to cisplatin correlated with pre-existing defects in the mitochondrial respiratory chain complexes of cancer cells, caused by loss of specific cytochrome c oxidase (COX) subunits. Knockdown of a COX protein altered chemosensitivity in vitro, increasing the propensity of cancer cells to undergo cell death following cisplatin treatment. In an independent validation, patients with reduced COX protein expression prior to treatment exhibited favourable clinical outcomes to chemotherapy, whereas tumours with unchanged COX expression were chemoresistant. In conclusion, previously undiscovered pre-existing defects in mitochondrial respiratory complexes cause cancer cells to become chemosensitive: mitochondrial defects lower the cells' threshold for undergoing cell death in response to cisplatin. By contrast, cancer cells with intact mitochondrial respiratory complexes are chemoresistant and have a high threshold for cisplatin-induced cell death. This connection between mitochondrial respiration and chemosensitivity is relevant to anticancer therapeutics that target the mitochondrial electron transport chain.
Resumo:
Various in-vitro chemosensitivity and resistance assays (CSRAs) have been demonstrated to be helpful decision aids for non-neurological tumors. Here, we evaluated the performance characteristics of two CSRAs for glioblastoma (GB) cells. The chemoresponse of fresh GB cells from 30 patients was studied in vitro using the ATP tumor chemoresponse assay and the chemotherapy resistance assay (CTR-Test). Both assay platforms provided comparable results. Of seven different chemotherapeutic drugs and drug combinations tested in vitro, treosulfan plus cytarabine (TARA) was the most effective, followed by nimustine (ACNU) plus teniposide (VM26) and temozolomide (TMZ). Whereas ACNU/VM26 and TMZ have proven their clinical value for malignant gliomas in large randomized studies, TARA has not been successful in newly diagnosed gliomas. This seeming discrepancy between in vitro and clinical result might be explained by the pharmacological behavior of treosulfan. Our results show reasonable agreement between two cell-based CSRAs. They appear to confirm the clinical effectiveness of drugs used in GB treatment as long as pharmacological preconditions such as overcoming the blood-brain barrier are properly considered.
Resumo:
Several improvements in ovarian cancer treatment have been achieved in recent years, both in surgery and in combination chemotherapy with targeting. However, ovarian tumors remain the women's cancers with highest mortality rates. In this scenario, a pivotal role has been endorsed to the immunological environment and to the immunological mechanisms involved in ovarian cancer behavior. Recent evidence suggests a loss of the critical balance between immune-activating and immune-suppressing mechanisms when oncogenesis and cancer progression occur. Ovarian cancer generates a mechanism to escape the immune system by producing a highly suppressive environment. Immune-activated tumor infiltrating lymphocytes (TILs) in ovarian tumor tissue testify that the immune system is the trigger in this neoplasm. The TIL mileau has been demonstrated to be associated with better prognosis, more chemosensitivity, and more cases of optimal residual tumor achieved during primary cytoreduction. Nowadays, scientists are focusing attention on new immunologically effective tumor biomarkers in order to optimize selection of patients for recruitment in clinical trials and to identify relationships of these biomarkers with responses to immunotherapeutics. Assessing this point of view, TILs might be considered as a potent predictive immunotherapy biomarker.
Resumo:
Mitochondria are actively engaged in the production of cellular energy sources, generation of reactive oxygen species (ROS), and regulation of apoptosis. Mitochondrial DNA (mtDNA) mutations/deletions and other mitochondrial abnormalities have been implicated in many diseases, especially cancer. Despite this, the roles that these defects play in cancer development, drug sensitivity, and disease progression still remain to be elucidated. The major objective of this investigation was to evaluate the mechanistic relationship between mitochondrial defects and alterations in free radical generation and chemosensitivity in primary chronic lymphocytic leukemia (CLL) cells. This study revealed that the mtDNA mutation frequency and basal superoxide generation are both significantly higher in primary cells from CLL patients with a history of chemotherapy as compared to cells from their untreated counterparts. CLL cells from refractory patients tended to have high mutation frequencies. The data suggest that chemotherapy with DNA-damaging agents may cause mtDNA mutations, which are associated with increased ROS generation and reduced drug sensitivity. Subsequent analyses demonstrated that CLL cells contain significantly more mitochondria than normal lymphocytes. This abnormal accumulation of mitochondria was linked to increased expression of nuclear respiratory factor-1 and mitochondrial transcription factor A, two key free radical-regulated mitochondrial biogenesis factors. Further analysis showed that mitochondrial content may have therapeutic implications since patient cells with high mitochondrial mass display significantly reduced in vitro sensitivity to fludarabine, a frontline agent in CLL therapy. The reduced in vitro and in vivo sensitivity to fludarabine observed in CLL cells with mitochondrial defects highlights the need for novel therapeutic strategies for the treatment of refractory disease. Brefeldin A, an inhibitor of endoplasmic reticulum (ER) to Golgi protein transport that is being developed as an anticancer agent, effectively induces apoptosis in fludarabine-refractory CLL cells through a secretory stress-mediated mechanism involving intracellular sequestration of pro-survival secretory factors. Taken together, these data indicate that mitochondrial defects in CLL cells are associated with alterations in free radical generation, mitochondrial biogenesis activity, and chemosensitivity. Abrogation of survival signaling by blocking ER to Golgi protein transport may be a promising therapeutic strategy for the treatment of CLL patients that respond poorly to conventional chemotherapy. ^
Resumo:
Based on the observation that removal of tumors from metastatic organs reversed their chemoresistance, we hypothesized that chemoresistance is induced by extracellular factors in tumor-bearing organs. By comparing chemosensitivity and proteins in different tumors (primary vs. metastases) and different culture systems (tumor fragment histocultures vs. monolayer cultures derived from the same tumor), we found elevated levels of acidic (aFGF) and basic (bFGF) fibroblast growth factors in the conditioned medium (CM) of solid and metastatic tumors. These CM induced broad spectrum resistance to drugs with diverse structures and action mechanisms (paclitaxel, doxorubicin, 5-fluorouracil). Inhibition of bFGF by mAb and its removal by immunoprecipitation resulted in complete reversal of the CM-induced chemoresistance, whereas inhibition/removal of aFGF resulted in partial reversal. Using CM that had been depleted of aFGF and/or bFGF and subsequently reconstituted with respective human recombinant proteins, we found that bFGF but not aFGF induced chemoresistance whereas aFGF amplified the bFGF effect. aFGF and bFGF fully accounted for the CM effect, indicating these proteins as the underlying mechanism of the chemoresistance. The FGF-induced resistance was not due to reduced intracellular drug accumulation or altered cell proliferation. We further showed that an inhibitor of aFGF/bFGF (suramin) enhanced the in vitro and in vivo activity of chemotherapy, resulting in shrinkage and eradication of well established human lung metastases in mice without enhancing toxicity. These results indicate elevated levels of extracellular aFGF/bFGF as an epigenetic mechanism by which cancer cells elude cytotoxic insult by chemotherapy, and provide a basis for designing new treatment strategies.
Resumo:
Telomerase inhibition has been touted as a novel cancer-selective therapeutic goal based on the observation of high telomerase levels in most cancers and the importance of telomere maintenance in long-term cellular growth and survival. Here, the impact of telomere dysfunction on chemotherapeutic responses was assessed in normal and neoplastic cells derived from telomerase RNA null (mTERC−/−) mice. Telomere dysfunction, rather than telomerase per se, was found to be the principal determinant governing chemosensitivity specifically to agents that induced double-stranded DNA breaks (DSB). Enhanced chemosensitivity in telomere dysfunctional cells was linked to therapy-induced fragmentation and multichromosomal fusions, whereas telomerase reconstitution restored genomic integrity and chemoresistance. Loss of p53 function muted the cytotoxic effects of DSB-inducing agents in cells with telomere dysfunction. Together, these results point to the combined use of DSB-inducing agents and telomere maintenance inhibition as an effective anticancer therapeutic approach particularly in cells with intact p53-dependent checkpoint responses.
Resumo:
AIM: To investigate the biological features of A549 cells in which epidermal growth factor (EGF) receptors expression were suppressed by RNA interference (RNAi). METHODS: A549 cells were transfected using short small interfering RNAs (siRNAs) formulated with Lipofectamine 2000. The EGF receptor numbers were determined by Western blotting and flowcytometry. The antiproliferative effects of sequence specific double stranded RNA (dsRNA) were assessed using cell count, colony assay and scratch assay. The chemosensitivity of transfected cells to cisplatin was measured by MTT. RESULTS: Sequence specific dsRNA-EGFR down-regulated EGF receptor expression dramatically. Compared with the control group, dsRNA-EGFR reduced the cell number by 85.0 %, decreased the colonies by 63.3 %, inhibited the migration by 87.2 %, and increased the sensitivity of A549 to cisplatin by four-fold. CONCLUSION: Sequence specific dsRNA-EGFR were capable of suppressing EGF receptor expression, hence significantly inhibiting cellular proliferation and motility, and enhancing chemosensitivity of A549 cells to cisplatin. The successful application of dsRNA-EGFR for inhibition of proliferation in EGF receptor overexpressing cells can help extend the list of available therapeutic modalities in the treatment of non-small-cell lung carcinoma (NSCLC).
Resumo:
The HT-29 human colon adenocarcinoma cell line, like many epithelial cells, displays an undifferentiated phenotype when cultured on plastic substrata. Biochemical markers of differentiation, such as brush border associated enzymes and carcinoembryonic antigen were expressed at very low levels. The differentiation-inducing effects of the culture of HT-29 cells on collagen type I gels were evaluated, and were assessed by morphological appearance, brush border associated enzyme activities and the secretion of CEA. The effect that this more physiological environment had on their chemosensitivity to a panel of chemotherapeutic agents was determined, so as to indicate whether this system could be used to improve the selectivity of screening for novel anticancer agents. Initial studies were performed on HT-29 cells derived from cells seeded directly from plastic substrata onto the collagen gels (designated Non-PPC gels). Their time of exposure to the collagen was limited to the time course of a single experiment and the results suggested that a longer, more permanent exposure might produce a more pronounced differentiation. HT-29 cells were then passaged continuously on collagen gels for a minimum of 10 passages prior to experimentation (designated PPC gels). The same parameters were measured, and compared to those for the cells grown on plastic and on the non-passaged collagen gels (Non-PPC) from the original studies. Permanently passaged cells displayed a similar degree of morphological differentiation as the non-passaged cells, with both culture conditions resulting in a more pronounced differentiation than that achieved by culture on plastic. It was noted that the morphological differentiation observed was very heterogeneous, a situation also seen in xenografted tumours in vivo. The activity of alkaline phosphatase and the production of CEA was higher in the cells passaged on collagen (PPC) than the cells cultured on non-passaged collagen gel (Non-PPC) and plastic. The biochemical determination of aminopeptidase activity showed that collagen gel culture enhanced the activity in both non-passaged and passaged HT-29 cells above that of the cells cultured on plastic. However, immunocytochemical localization of aminopeptidase and sucrase-isomaltase of samples of cells grown on the various substrata for 7, 14, 21 and 28 days showed a reduction in both enzymes in the cells grown on collagen gels when compared to cells grown on plastic. The reason for the discrepancy between the two assays for aminopeptidase is at this stage unexplained. Although, there was evidence to suggest that the culture of HT-29 cells on collagen gels was capable of inducing morphological and biochemical markers of enterocytic differentiation, there were no differences in the chemosensitivity of the different cell groups to a panel of anticancer agents. Preliminary studies suggested that the ability of the cells to polarize by their culture on porous filter chambers without any exogenous ECM was sufficient to enhance HT-29 differentiation and the onset of differentiation was probably correlated with the production of ECM by the cells themselves.