1000 resultados para Chemical Sediments
Resumo:
The highly depleted intra-oceanic Tonga-Kermadec island arc forms an endmember of arc systems and a unique location in which to isolate the effects of the slab flux. High precision TIMS uranium, thorium, strontium, neodymium, and lead isotopes, along with complete major and trace element data, have been obtained on an extensive sample set comprising fifty-eight lavas along the arc as well as nineteen samples of the subducting sediments at DSDP site 204 just to the east of the Tonga-Kermadec trench. Ca/Ti and Al/Ti ratios extend from values appropriate to an N-MORB source in the southern Kermadecs to very high ratios in Tonga interpreted to reflect increasing degrees of depletion of the mantle wedge due to backarc basalt extraction. The isotope data emphasize the need for four components in the petrogenesis of the lavas: (1) the mantle wedge; (2) a component with elevated 207Pb/204Pb towards which the Kermadec and southern Tongan lavas extend; (3) a component characterised by high 206Pb/204Pb, Ta/Nd, and low 143Nd/144Nd observed only in the northernmost Tongan islands of Tafahi and Niuatoputapu; (4) a fluid component characterised by strong enrichments of Rb, Ba, U, K, Ph, and Sr, relative to Th, Zr, and the REE and producing large 238U excesses ((230Th/238U) = 0.8-0.5) in the more depleted lavas. The mantle wedge (Component 1) is isotopically similar to the source of the Lau BABB. Component 2 is average pelagic sediment on the downgoing Pacific plate as observed at DSDP sites 595/596 and in the upper sections of the sediment pile at DSDP site 204. Mass balance calculations indicate that less than 0.5% is recycled into the arc lavas; essentially all the subducted sediment is returned to the upper mantle (~0.03 km**3/yr). Exceptionally low concentrations of Ta and Nb relative to Th and the LREE requires that this sediment component is added as a partial melt which was in equilibrium with residual rutile or ilmenite. Component 3 is identified as volcaniclastics from the Louisville Ridge which comprise the lower 44 m of the sediment section intersected at DSDP site 204. These volcaniclastics are spatially restricted to the vicinity of the Louisville Ridge and provide a unique sediment tracer which can be used to show that it takes 4 Myr from the time of subduction to its first appearance in the arc lava signature. Component 4, the fluid contribution to the lava source is inferred to contribute ~1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K, 0.2 ppm Ph, and 30 ppm Sr. It has 87Sr/86Sr = 0.7035 and 206Pb/204Pb = 18.5 and thus it is inferred to have been derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a reference line through the lowest (230Th/232Th) lavas constrains this to be 30000-50000 yr. The U-Th and Th-Ra isotope systematics are decoupled, and it is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the backarc island of Niuafo'ou. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 0.0002 kg/m**3/yr.
Resumo:
Distribution trace element contents in the upper (up to 5 m) Holocene-Upper Pleistocene sediment layer along the northern and southern sublatitudinal profiles in the northern part of the Deryugin Trough is discussed. Mathematical processing of chemical analysis data has been made. On the basis of the cluster analysis 16 elements have been combined into 5 geochemical groups. Two of them (1 - Ag-Mo group and 2 - Mn-Ba-Ni-Sr group) were considered in detail. Analysis of Ag and Mo distributions in the sediments and findings of molybdenite permitted to conclude that enrichment of the sediments by these elements resulted from edaphic washing of magmatic rocks containing Ag-Mo mineralization and probably located on the northwestern slope of the Deryugin trough. The second geochemical group is most likely connected with hydrothermal barite mineralization found in the northeastern part of the Deryugin trough. Considering Mn distribution in bottom sediment cores supply of Mn was pulsating. This allows concluding that during Holocene - Late Pleistocene three cycles of hydrothermal activity occurred in the Deryugin Trough, and the most intensive one was in Holocene.
Resumo:
Li and Li isotopes have been measured in the clay fraction of sediments recovered from the Middle Valley hydrothermal site on the Juan De Fuca Ridge. The Li content of pure detrital clays is 51 ppm while hydrothermal clays and carbonates have lower Li (22+/-11 ppm). However, there is no clear relationship between the mineralogy of the hydrothermal alteration products and their Li content. The d7Li value of the detrital clays is +5.8?. Hydrothermal clays and carbonates have d7Li in the range of -3.9? to +7.8?; these values do not seem to be dependent on the temperature at which they formed. Modelling of the Li and Li isotope systematics indicates that the fluid from which the alteration products form is significantly enriched in Li (higher than 10000 µmol/kg) relative to pore fluids recovered from within the sediments (up to 589 µmol/kg; [Wheat, C.G., M.J. Mottl, 1994. Data report: trace metal composition of pore water from Sites 855 through 858, Middle valley, Juan De Fuca Ridge. In Mottl, M.J., Davis, E.E., Fisher, A.T., Slack, J.F. (Eds.), Proc. ODP, Sci. Res. 139: 749-755; doi:10.2973/odp.proc.sr.139.269.1994]), and that this Li is derived from sediment. Thus, the alteration products are not in equilibrium with their conjugate pore fluids; rather, the alteration minerals formed at lower water/sediment ratios. This suggests that fluid flow pathways at Middle Valley were more diffuse in the past than they are today.
Resumo:
During underwater photography and sampling of the rift valley bottom in the axial part of the East Pacific Rise, where water transparency is reduced due to hydrothermal input, ore manifestations have been found. The bottom is covered by them as by a jacket on both sides from the EPR axial zone. However, exposed pillow-lavas and clumpy blocks in rift ledges are covered by a thin metal-bearing film. It is supposed that sedimentation results mainly from hydrothermal input of dissolved chemical elements in seawater, their transformation on the geochemical barrier, and subsequent deposition as particulates. Contents of ore components in metalliferous sediments have been measured by atomic-absorption and X-ray radiometry methods. Sediment age has been determined as Middle Pleistocene - Holocene. Maximal hydrothermal activity was at the beginning of Early Holocene, about 10 Ka. A smoker has been found on the western slope of the rift valley.
Resumo:
A study of composition of biomarkers (lignin and phenols) in aerosols and bottom sediments from the Tropical North Atlantic was carried out. It was shown that organic matter of aerosols was mostly composed of products of terrestrial plants (arboreal fibers, pollen, and spores). Biomarker composition in the aerosols and in the bottom sediments was practically similar, which proved delivery of terrigenous organic matter to the ocean via the atmosphere.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.
Resumo:
Upper Miocene to Pleistocene hemipelagites and resedimented facies recovered at Holes 976B and 977A (Leg 161) in the Alboran Basin consist mainly of biogenic and detrital components, with a minor contribution of neoformed mineral phases. Diagenetic processes have not obliterated the primary deposition signal, and therefore detrital components (quartz, feldspar, detrital dolomite, rock fragments, and clays) provide information about source rocks and provenances. No major bulk or clay mineralogy differences were recognized between resedimented and hemipelagic facies; in fact, similar mineral assemblages in both types of facies suggest common source rocks. However, mineral abundance fluctuations can be related to climate variations and tectonic factors, as the main controls of sediment fill of this basin. A marked increase in smectites in Messinian sediments suggests an extensive development of soils during that time, probably favored by the alternation of wet and dry climate episodes and the relative aridification of the Mediterranean borderlands. A notable increase in detrital components suggests a sea-level fall and/or tectonic uplift during the late Pliocene. The significant increase in detrital dolomite in the uppermost Pliocene deposits suggests the uplift of dolomite-rich rocks as source areas. Mineral components in Pleistocene sediments indicate increasing tectonic stability, and clay-mineral fluctuations during the Pleistocene can be related not only to tectonic events, but also to alternating cooling and warming periods.
Resumo:
Detailed major- and trace-element chemistry is presented for 41 sediment samples from DSDP Site-223 borehole cores. A marked change in chemical (and mineralogical) character is shown at the end of the Early Miocene Epoch which relates to tectonic events and associated changes in sedimentary regime. Enrichment in the contents of such elements as Mg, Cr and Ni compared with average values for fine-grained sediments occurs throughout the sequence and is particularly marked in the upper group of samples. A basic-ultrabasic provenance is suggested - the Oman ophiolites. Leaching with combined acid-reducing agent indicated typical lithogenous-character ordering for the elements and emphasised the enrichment of Mg, Cr, Ni (and Li, Cu, Zn, Pb, Fe and Ti) over values for near-shore muds and terrigenous material. Factor analysis on the bulk chemical data identifies the main lithogenous and biogenous components, subdividing the latter. It separates the upper and lower group of chemically dissimilar sediments and delineates a Mn-hydroxide phase. It also shows the essentially independent roles of Na, Ba and P.