657 resultados para Chelating adsorbent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-μm particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e). © 2013 Elsevier B.V. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of a new octakis[3-(2,2'-dipyridylamine)propyl]octasilsesquioxane (T8-Pr-DPA), and a study of the metal ion preconcentration in fuel ethanol. Batch and column experiments were conducted to investigate for the removal of heavy metal ions from fuel ethanol. The results showed that the Langmuir allowed to describe the sorption equilibrium data of the metal ions on T8-Pr-DPA in a satisfactory way. The following maximum adsorption capacities (in mmolg-1) were determined: 3.62 for Fe (III), 3.32 for Cr (III), 2.15 for Cu (II), 1.80 for Co (II), 1.62 for Pb (II), 1.32 for Ni (II) and 0.88 for Zn (II). The thermodynamic parameters for the adsorption process such as free energy of adsorption (δG), enthalpy of adsorption (δH) and entropy of adsorption (δS) were calculated. Thermodynamic parameters showed that the system has favorable enthalpic, Gibbs free energy, and entropic values. The sorption-desorption of the metal ions has made possible the development of a preconcentration and determination method of metal ions at trace level in fuel ethanol. The method of quantitative analysis for Fe, Cu, Ni and Zn in fuel ethanol by Flame AAS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, limit of detection, limit of quantification, and the relative standard deviation and accuracy. The accuracy of the method was assessed by testing analyte recovery in the fuel ethanol samples. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular, porous crystalline material constructed from neutral helical coordination polymers incorporating manganese(II) ions and two types of bridging ligands, namely the deprotonated form of 2-hydroxy-5-methoxy-3-nitrobenzaldehyde (HL) and isobutyrate (iB−), has been obtained and structurally characterized. Structural analysis reveals that within the coordination polymer each benzaldehyde derivative ligates two manganese ions in 6-membered chelating rings, and the isobutyrate ligands cooperatively chelate either two or three manganese ions. The solid state assembly of the resulting polymeric chains of formula [Mn4(L)2(iB)6]n (1), described in the polar space group R3c, is associated with tubular channels occupied by MeCN solvent molecules (1·xMeCN; x ≤ 9). TGA profiles and PXRD measurements demonstrate that the crystallinity of the solid remains intact in its fully desolvated form, and its stability and crystallinity are ensured up to a temperature of 190 °C. Gas adsorption properties of desolvated crystals were probed, but no remarkable sorption capacity of N2 and only a limited one for CO2 could be observed. Magnetic susceptibility data reveal an antiferromagnetic type of coupling between adjacent manganese(II) ions along the helical chains with energy parameters J1 = −5.9(6) cm−1 and J2 = −1.8(9) cm−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the literature, different approaches, terminologies, concepts and equations are used for calculating gas storage capacities. Very often, these approaches are not well defined, used and/or determined, giving rise to significant misconceptions. Even more, some of these approaches, very much associated with the type of adsorbent material used (e.g., porous carbons or new materials such as COFs and MOFs), impede a suitable comparison of their performances for gas storage applications. We review and present the set of equations used to assess the total storage capacity for which, contrarily to the absolute adsorption assessment, all its experimental variables can be determined experimentally without assumptions, ensuring the comparison of different porous storage materials for practical application. These material-based total storage capacities are calculated by taking into account the excess adsorption, the bulk density (ρbulk) and the true density (ρtrue) of the adsorbent. The impact of the material densities on the results are investigated for an exemplary hydrogen isotherm obtained at room temperature and up to 20 MPa. It turns out that the total storage capacity on a volumetric basis, which increases with both, ρbulk and ρtrue, is the most appropriate tool for comparing the performance of storage materials. However, the use of the total storage capacities on a gravimetric basis cannot be recommended, because low material bulk densities could lead to unrealistically high gravimetric values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Western Laboratories ; Arthur D. Little, Inc ; San Francisco, Calif."