256 resultados para Charmed mesons
Resumo:
The SU(3)-flavour symmetry breaking and the quark-antiquark annihilation mechanism are taken into account for describing the singlet-octet mixing for several nonets assigned by the Particle Data Group (PDG). This task is approached with the mass matrix formalism.
Resumo:
We calculate the spectrum of the masses of light and heavy mesons, using a potential that shows confinement and asymptotic freedom for quark-antiquark pairs. From the analysis of the results we estimate the masses of mesons with hottom not yet found experimentally. We discuss the behaviour of the confinement potential under Lorentz transformation and calculate the spin-dependent corrections. We also calculate the electromagnetic decay rates and the leptonic and hadronic decay widths for some mesons. © 1985 Società Italiana di Fisica.
Resumo:
The pseudoscalar mesons η(547), η′(958) and η″(1410) are studied in the gluonium-quarkonium mixing framework. The SU(3)-flavor symmetry breaking and annihilation effects are considered. Estimates of the glueball mass and of the ms/mu ratio are provided. The system η(1295) and η(1490) is also considered in a mixing scheme.
Off-diagonal helicity density matrix elements for vector mesons produced in polarized e+e- processes
Resumo:
Final-state qq̄ interactions give origin to nonzero values of the off-diagonal element ρ1,-1 of the helicity density matrix of vector mesons produced in e+e- annihilations, as has been confirmed by recent OPAL data on φ, D*, and K*. New predictions are given for ρ1,-1 of several mesons produced at large XE and small pT - i.e., collinear with the parent jet - in the annihilation of polarized e+ and e-; the results depend strongly on the elementary dynamics and allow further nontrivial tests of the standard model.
Resumo:
The first experimental evidence for one of the six predicted baryon states which contain two valence charmed quarks-the doubly charmed baryons. As such, there were many predictions of the masses and other properties of these states. The properties of doubly charmed baryons provide a new window into the structure of baryonic matter.
Resumo:
The nuclear incoherent π 0 photoproduction cross section from 12C is evaluated at forward angles in the 4.0 to 6.0 GeV energy range using the multicollisional intranuclear cascade model MCMC. The model incorporates some improvements in comparison with previous versions associated with the momentum distribution (MD) for light nuclei - extracted from the available (e,e ′p) data - as well as the evaluation of the shadowing effects during the photo-nucleus interaction. The final results of the single and double differential cross sections at forward angles are very sensitive to the MD parameterizations due to the Pauli principle, which largely suppresses the cross sections for low momentum transfer. The attenuation of the nuclear cross section due to pion - nucleus final state interactions is approximately 40% (without nuclear shadowing), which is in nice agreement with the predictions from the Glauber model. The single and double π 0 differential cross sections are presented for possible applications for the interpretation of the inelastic background in the PrimEx experiment at the Jefferson Laboratory. © 2007 American Institute of Physics.
Resumo:
The short-distance part of the low energy interaction of D-mesons and nucleons is investigated in the context of a quark model. The quark model is based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The basic mechanism for the short-distance interaction between the D-mesons and nucleons is quark interchange. Using Resonating GroupMethod techniques an effective potential for the interaction between nucleons and D mesons can be obtained and used in a Lippmann-Schwinger equation to obtain differential cross-sections and phase shifts.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
We investigate the scattering of heavy-light K and D mesons by nucleons at low energies. The short-distance part of the interaction is described by quark-gluon interchange and the longdistance part is described by a one-meson-exchange model that includes the contributions of vector (ρ, ω) and scalar (σ) mesons. The microscopic quark model incorporates a confining Coulomb potential extracted from lattice QCD simulations and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The derived effective meson-nucleon potential is used in a Lippmann-Schwinger equation to obtain s-wave phase shifts. Our final aim is to set up a theoretical framework that can be extended to finite temperatures and baryon densities. © 2010 American Institute of Physics.
Resumo:
We discuss two aspects of charmonium in medium. First, we present results of a recent study that compares the phenomenology of charmonium spectroscopy using smooth and sudden string breaking potentials. Next, we present results of a study that explores the possibility that J/ψ might be bound in a large nucleus through the excitation of a color singlet intermediate states of D and D* mesons with density masses. © 2010 American Institute of Physics.
Resumo:
In this paper, Lippmann-Schwinger equation is solved by using Martin and Cornel potentials to calculate bc̄ energy levels. The results for some energy levels which are not observable, such as those of tt̄ in its short half-life are also predicted. Our calculated energy levels are in good agreement with results of other groups. The stability interval for Yukawa-Linear potential is also studied by investigating the spectrum of eigenvalues. © 2013 Springer Science+Business Media New York.
Resumo:
We use QCD sum rules to study the possible existence of a Θc(3250) charmed pentaquark. We consider the contributions of condensates up to dimension 12 and work at leading order in αs. We obtain mΘc=(3.29±0.13) GeV, compatible with the mass of the structure seen by BABAR Collaboration in the decay channel B-→p̄Σc++π-π-. The proposed state is compatible with a previous proposed pentaquark state in the anticharmed sector. © 2013 American Physical Society.
Resumo:
The mechanism of forward angle incoherent photoproduction of pseudoscalar mesons off nuclei is revisited via the time-dependent multicollisional Monte Carlo (MCMC) intranuclear cascade model. Our results-combined with recent developments to address coherent photoproduction-reproduce with good accuracy recent JLab data of pi(0) photoproduction from carbon and lead at an average photon energy k similar to 5.2 GeV. For the case of. photoproduction, our results for k = 9 GeV suggest that future measurements to extract the eta ->gamma gamma decay width via the Primakoff method should be focused on light nuclei, where the disentanglement between the Coulomb and strong amplitudes is more easily achieved. The prospects to use heavy nuclei data to access the unknown eta N cross section in cold nuclear matter are also presented.
Resumo:
The production of the prompt charm mesons D-0, D+, D*(+), and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the LHC, at a centre-of-mass energy root s(NN) = 2.76 TeV per nucleon-nucleon collision. The p(t)-differential production yields in the range 2 < p(t) < 16 GeV/c at central rapidity, vertical bar y vertical bar < 0.5, were used to calculate the nuclear modification factor R-AA with respect to a proton-proton reference obtained from the cross section measured at root s = 7 TeV and scaled to root s = 2.76 TeV. For the three meson species, R-AA shows a suppression by a factor 3-4, for transverse momenta larger than 5 GeV/c in the 20% most central collisions. The suppression is reduced for peripheral collisions.
Resumo:
Measurements of the differential cross section and the transverse single-spin asymmetry, A(N), vs x(F) for pi(0) and eta mesons are reported for 0.4 < x(F) < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb(-1) was analyzed, which was recorded during p(up arrow) + p collisions at root s = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for pi(0), including the previously unmeasured region of x(F) > 0.55, is consistent with a perturbative QCD prediction, and the eta/pi(0) cross-section ratio agrees with existing midrapidity measurements. For 0.55 < x(F) < 0.75, the average A(N) for eta is 0.210 +/- 0.056, and that for pi(0) is 0.081 +/- 0.016. The probability that these two asymmetries are equal is similar to 3%.