961 resultados para Cerebral Function Monitor
Resumo:
PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.
Resumo:
BACKGROUND Physical therapy for youth with cerebral palsy (CP) who are ambulatory includes interventions to increase functional mobility and participation in physical activity (PA). Thus, reliable and valid measures are needed to document PA in youth with CP. OBJECTIVE The purpose of this study was to evaluate the inter-instrument reliability and concurrent validity of 3 accelerometer-based motion sensors with indirect calorimetry as the criterion for measuring PA intensity in youth with CP. METHODS Fifty-seven youth with CP (mean age=12.5 years, SD=3.3; 51% female; 49.1% with spastic hemiplegia) participated. Inclusion criteria were: aged 6 to 20 years, ambulatory, Gross Motor Function Classification System (GMFCS) levels I through III, able to follow directions, and able to complete the full PA protocol. Protocol activities included standardized activity trials with increasing PA intensity (resting, writing, household chores, active video games, and walking at 3 self-selected speeds), as measured by weight-relative oxygen uptake (in mL/kg/min). During each trial, participants wore bilateral accelerometers on the upper arms, waist/hip, and ankle and a portable indirect calorimeter. Intraclass coefficient correlations (ICCs) were calculated to evaluate inter-instrument reliability (left-to-right accelerometer placement). Spearman correlations were used to examine concurrent validity between accelerometer output (activity and step counts) and indirect calorimetry. Friedman analyses of variance with post hoc pair-wise analyses were conducted to examine the validity of accelerometers to discriminate PA intensity across activity trials. RESULTS All accelerometers exhibited excellent inter-instrument reliability (ICC=.94-.99) and good concurrent validity (rho=.70-.85). All accelerometers discriminated PA intensity across most activity trials. LIMITATIONS This PA protocol consisted of controlled activity trials. CONCLUSIONS Accelerometers provide valid and reliable measures of PA intensity among youth with CP.
Resumo:
Background: Opiod dependence is a chronic severe brain disorder associated with enormous health and social problems. The relapse back to opioid abuse is very high especially in early abstinence, but neuropsychological and neurophysiological deficits during opioid abuse or soon after cessation of opioids are scarcely investigated. Also the structural brain changes and their correlations with the length of opioid abuse or abuse onset age are not known. In this study the cognitive functions, neural basis of cognitive dysfunction, and brain structural changes was studied in opioid-dependent patients and in age and sex matched healthy controls. Materials and methods: All subjects participating in the study, 23 opioid dependents of whom, 15 were also benzodiazepine and five cannabis co-dependent and 18 healthy age and sex matched controls went through Structured Clinical Interviews (SCID) to obtain DSM-IV axis I and II diagnosis and to exclude psychiatric illness not related to opioid dependence or personality disorders. Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) measurements were done on 21 opioid-dependent individuals on the day of hospitalization for withdrawal therapy. The neural basis of auditory processing was studied and pre-attentive attention and sensory memory were investigated. During the withdrawal 15 opioid-dependent patients participated in neuropsychological tests, measuring fluid intelligence, attention and working memory, verbal and visual memory, and executive functions. Fifteen healthy subjects served as controls for the MEG-EEG measurements and neuropsychological assessment. The brain magnetic resonance imaging (MRI) was obtained from 17 patients after approximately two weeks abstinence, and from 17 controls. The areas of different brain structures and the absolute and relative volumes of cerebrum, cerebral white and gray matter, and cerebrospinal fluid (CSF) spaces were measured and the Sylvian fissure ratio (SFR) and bifrontal ratio were calculated. Also correlation between the cerebral measures and neuropsychological performance was done. Results: MEG-EEG measurements showed that compared to controls the opioid-dependent patients had delayed mismatch negativity (MMN) response to novel sounds in the EEG and P3am on the contralateral hemisphere to the stimulated ear in MEG. The equivalent current dipole (ECD) of N1m response was stronger in patients with benzodiazepine co-dependence than those without benzodiazepine co-dependence or controls. In early abstinence the opioid dependents performed poorer than the controls in tests measuring attention and working memory, executive function and fluid intelligence. Test results of the Culture Fair Intelligence Test (CFIT), testing fluid intelligence, and Paced Auditory Serial Addition Test (PASAT), measuring attention and working memory correlated positively with the days of abstinence. MRI measurements showed that the relative volume of CSF was significantly larger in opioid dependents, which could also be seen in visual analysis. Also Sylvian fissures, expressed by SFR were wider in patients, which correlated negatively with the age of opioid abuse onset. In controls the relative gray matter volume had a positive correlation with composite cognitive performance, but this correlation was not found in opioid dependents in early abstinence. Conclusions: Opioid dependents had wide Sylvian fissures and CSF spaces indicating frontotemporal atrophy. Dilatation of Sylvian fissures correlated with the abuse onset age. During early withdrawal cognitive performance of opioid dependents was impaired. While intoxicated the pre-attentive attention to novel stimulus was delayed and benzodiazepine co-dependence impaired sound detection. All these changes point to disturbances on frontotemporal areas.
Resumo:
Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25±8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD+-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochromec (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD+-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.
Resumo:
In this thesis, we explore the density of the microglia in the cerebral and cerebellar cortices of individuals with autism to investigate the hypothesis that neuroinflammation is involved in autism. We describe in our findings an increase in microglial density in two disparate cortical regions, frontal insular cortex and visual cortex, in individuals with autism (Tetreault et al., 2012). Our results imply that there is a global increase in the microglial density and neuroinflammation in the cerebral cortex of individuals with autism.
We expanded our cerebellar study to additional neurodevelopmental disorders that exhibit similar behaviors to autism spectrum disorder and have known cerebellar pathology. We subsequently found a more than threefold increase in the microglial density specific to the molecular layer of the cerebellum, which is the region of the Purkinje and parallel fiber synapses, in individuals with autism and Rett syndrome. Moreover, we report that not only is there an increase in microglia density in the molecular layer, the microglial cell bodies are significantly larger in perimeter and area in individuals with autism spectrum disorder and Rett syndrome compared to controls that implies that the microglia are activated. Additionally, an individual with Angelman syndrome and the sibling of an individual with autism have microglial densities similar to the individuals with autism and Rett syndrome. By contrast, an individual with Joubert syndrome, which is a developmental hypoplasia of the cerebellar vermis, had a normal density of microglia, indicating the specific pathology in the cerebellum does not necessarily result in increased microglial densities. We found a significant decrease in Purkinje cells specific to the cerebellar vermis in individuals with autism.
These findings indicate the importance for investigation of the Purkinje synapses in autism and that the relationship between the microglia and the synapses is of great utility in understanding the pathology in autism. Together, these data provide further evidence for the neuroinflammation hypothesis in autism and a basis for future investigation of neuroinflammation in autism. In particular, investigating the function of microglia in modifying synaptic connectivity in the cerebellum may provide key insights into developing therapeutics in autism spectrum disorder.
Resumo:
Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.
Resumo:
It is essential to monitor deteriorated civil engineering structures cautiously to detect symptoms of their serious disruptions. A wireless sensor network can be an effective system for monitoring civil engineering structures. It is fast to deploy sensors especially in difficult-to-access areas, and it is extendable without any cable extensions. Since our target is to monitor deteriorations of civil engineering structures such as cracks at tunnel linings, most of the locations of sensors are known, and sensors are not required to move dynamically. Therefore, we focus on developing a deployment plan of a static network in order to reduce the value of a cost function such as initial installation cost and summation of communication distances of the network. The key issue of the deployment is the location of relays that forward sensing data from sensors to a data collection device called a gateway. In this paper, we propose a relay deployment-planning tool that can be used to design a wireless sensor network for monitoring civil engineering structures. For the planning tool, we formalize the model and implement a local search based algorithm to find a quasi-optimal solution. Our solution guarantees two routings from a sensor to a gateway, which can provide higher reliability of the network. We also show the application of our experimental tool to the actual environment in the London Underground.
Resumo:
An electronic instrument for measuring freezer temperature in the range of +40 to -40°C is described. The salient features of the instrument are remote display (digital and analogue versions with an accuracy of ± 0.1 and ± 0.5°C respectively) and provision for continuous record of temperature. Two types of sensors using thermistor and P. N. function of transistor were used for temperature sensing.
Resumo:
Human cerebral cortical function degrades during old age. Much of this change may result from a degradation of intracortical inhibition during senescence. We used multibarreled microelectrodes to study the effects of electrophoretic application of gamma-aminobutyric acid (GABA), the GABA type a (GABAa) receptor agonist muscimol, and the GABAa receptor antagonist bicuculline, respectively, on the properties of individual V1 cells in old monkeys. Bicuculline exerted a much weaker effect on neuronal responses in old than in young animals, confirming a degradation of GABA-mediated inhibition. On the other hand, the administration of GABA and muscimol resulted in improved visual function. Many treated cells in area V1 of old animals displayed responses typical of young cells. The present results have important implications for the treatment of the sensory, motor, and cognitive declines that accompany old age.
Resumo:
The aim of this study was to determine the effect of different concentrations of normobaric oxygen (NBO) on neurological function and the expression of caspase-3 and -9 in a rat model of acute cerebral ischaemia. Sprague-Dawley rats (n=120) were randomly divided into four groups (n=30 per group), including 3 groups given NBO at concentrations of 33%, 45% or 61% and one control group given air (21% oxygen). After 2 h of ischaemic occlusion, each group was further subdivided into six subgroups (n=5) during reperfusion according to the duration (3, 6, 12, 24, 48 or 72 h) and concentration of NBO (33%, 45% or 61%) or air treatment. The Fluorescence Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to detect caspase-3 and -9 mRNA and protein relative expression respectively. The Neurologic Impairment Score (NIS) was significantly lower in rats given 61% NBO ≥3 h after reperfusion when compared to the control group (P<0.05, Mann–Whitney U). NBO significantly reduced caspase-3 and -9 mRNA and protein expression when compared to the control group at all NBO concentrations and time points (P<0.05, ANOVA). The expression of caspase-3 and -9 was lower in the group given 61% NBO compared any other group, and this difference was statistically significant when compared to the group given 33% NBO for ≥48 h and the control group (both P<0.05, ANOVA). These findings indicate that NBO may inhibit the apoptotic pathway by reducing caspase-3 and -9 expression, thereby promoting neurological functional recovery after stroke.
Resumo:
Attempts were made to measure the fraction of elemental carbon (EC) in ultrafine aerosol by modifying an Ambient Carbonaceous Particulate Monitor (ACPM, R&P 5400). The main modification consisted in placing a quartz filter in one of the sampling lines of this dual-channel instrument. With the filter all aerosol and EC contained in it is collected, while in the other line of the instrument the standard impactor samples only particles larger than 0.14 μm. The fraction of EC in particles smaller than 0.14 μm is derived from the difference in concentration as measured via the two sampling lines. Measurements with the modified instrument were made at a suburban site in Amsterdam, The Netherlands. An apparent adsorption artefact, which could not be eliminated by the use of denuders, precluded meaningful evaluation of the data for total carbon. Blanks in the measurements of EC were negligible and the EC data were hence further evaluated. We found that the concentration of EC obtained via the channel with the impactor was systematically lower than that in the filter-line. The average ratio of the concentrations was close to 0.6, which indicates that approximately 40% of the EC was in particles smaller than 0.14 μm. Alternative explanations for the difference in the concentration in the two sampling lines could be excluded, such as a difference in the extent of oxidation. This should be a function of loading, which is not the case. Another reason for the difference could be that less material is collected by the impactor due to rebound, but such bounce of aerosol is very unlikely in The Netherlands due to co-deposition of abundant deliquesced and thus viscous ammonium compounds. The conclusion is that a further modification to assess the true fraction of ultrafine EC, by installing an impactor with cut-off diameter at 0.1 μm, would be worth pursuing. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose. To determine the prevalence, nature, and degree of accommodative dysfunction among children with different types and severities of cerebral palsy (CP) in Northern Ireland. Methods. Ninety subjects with CP (aged 4–15 years) were recruited through the Northern Ireland CP Register (NICPR). Modified Nott dynamic retinoscopy was used to measure lag and lead of accommodation at three test distances: 25 cm (4 D), 16.7 cm (6 D), and 10 cm (10 D) with the distance correction in place. Accommodative function was also assessed in an age-matched control group (n = 125) for comparison. Each subject’s neurologic status was derived from the NICPR. Results. Children with CP demonstrate significantly reduced accommodative responses compared with their neurologically normal peers. Of the subjects with CP, 57.6% demonstrated an accommodative lag outside normal limits at one or more distances. Reduced accommodative responses were significantly associated with more severe motor and intellectual impairments (ANOVA P = 0.001, P < 0.01, respectively). Conclusions. Brain injury such as that present in CP has a significant impact on accommodative function. These findings have implications for the optometric care of children with CP and inform our understanding of the impact of early brain injury on visual development.
Resumo:
Cerebral palsy (CP) is a relatively rare condition with enormous social and financial impact. Information about CP is not routinely collected in the United Kingdom. We have pooled non-identifiable data from the five currently active UK CP registers to form the UKCP database: birth years 1960–1997. This article describes the rationale behind this collaboration and the creation of the database. Data about 6910 children with CP are currently held. The mean annual prevalence rate was 2.0 per 1000 live births for birth years 1986–1996. Where type is known, 91 per cent have spastic CP. Where data are available, nearly one-third of children have severely impaired lower limb function, and nearly a quarter have severely impaired upper limb function. As well as describing the range and complexity of motor and associated impairments, the pooled data from the UKCP database provide a platform for studies of aetiology, long-term outcomes, participation and service needs. The UKCP database is an important national resource for the surveillance of CP and the study of its epidemiology in the United Kingdom.
Resumo:
The aim of the study was to establish if a relationship exists between the energy efficiency of gait, and measures of activity limitation, participation restriction, and health status in a representative sample of children with cerebral palsy (CP). Secondary aims were to investigate potential differences between clinical subtypes and gross motor classification, and to explore other relationships between the measures under investigation. A longitudinal study of a representative sample of 184 children with ambulant CP was conducted (112 males, 72 females; 94 had unilateral spastic C P, 84 had bilateral spastic C P, and six had non-spastic forms; age range 4-17y; Gross Motor Function Classification System Level I, n=57; Level II, n=91; Level III, n=22; and Level IV, n=14); energy efficiency (oxygen cost) during gait, activity limitation, participation restriction, and health status were recorded. Energy efficiency during gait was shown to correlate significantly with activity limitations; no relationship between energy efficiency during gait was found with either participation restriction or health status. With the exception of psychosocial health, all other measures showed significant differences by clinical subtype and gross motor classification. The energy efficiency of walking is not reflective of participation restriction or health status. Thus, therapies leading to improved energy efficiency may not necessarily lead to improved participation or general health.
Resumo:
Aim. This paper is a presentation of a study protocol to establish the prevalence of orthopaedic problems (hip dislocation, pelvic obliquity, spinal deformity and contractures) and their impact on pain, function, participation and health in a population of children and young people with severe cerebral palsy.
Background. Cerebral palsy is the commonest cause of motor impairment in childhood and is associated with life-long disability. An estimated 30% of people with cerebral palsy have severe forms and are non-ambulant. Although the underlying neurological damage is not amenable to correction, many health services are dedicated to providing therapeutic and adaptive support to help people with the condition reach their potential.
Method. A cross-sectional survey of children and young people, aged 4–25 years with severe, non-ambulant cerebral palsy as defined using the Gross Motor Function Classification System (Levels IV and V). Study participants will be identified from a pre-existing, geographically defined case register and recruited via a healthcare professional known to them. Two assessments will be undertaken: one involving parents/carers at home and using questionnaires; the other involving the child/young person ideally in one of three settings and including X-rays if clinically indicated.
Discussion. This study will contribute to our knowledge of the history and epidemiology of orthopaedic problems in children and young people with cerebral palsy and how these problems accumulate and impact on participation, health and well-being. The study will also identify unmet need and make recommendations for good practice in relation to the orthopaedic care and management for people with severe cerebral palsy