72 resultados para Cercal Sensilla
Resumo:
Morphological structures of the head of 1st and 5th instar nymphs of Triatoma circummaculata and Triatoma rubrovaria were revealed by analysis using scanning electron microscopy (SEM). Differences between Ist and 5th instar nymphs of these two species were observed in the postocular callosity, the number of ommatidia and tapered hair, the small segment between antennal segments, the rostrum third segment and slit lines. These slit lines were different only in the 5th instar. Similarities observed were the presence of tapered hairs in the joints, and the type of sensilla in the antennal segments. Only the Ist instar shows anteclypeus and gena sensilla. The antennal segments comprise the following types of sensilla: basiconica, bristles type I, bristles type II, bristles type III, campaniformia, coeloconica, chemosensilla, placodea, trichobothria and trichoidea. We describe here for the first time six (3+3) sensilla basiconica on the dorsal portion of the first segment of the rostrum. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study examined the meanings that the intensive care unit (ICU) physicians attribute to their practice when caring for brain-dead organ donors. It is a phenomenological study, a qualitative method that searches for describing and understanding the experiences lived. Data were collected through recorded individual interviews made with 10 ICU physicians who work in a university hospital in the interior of São Paulo, Brazil. Three categories emerged from data: (1) providing care for brain-dead organ donors; (2) relating to donors and their families; and (3) the ethical concerns and self-awareness of the physicians. There is consensus as to-many aspects: demand of technical qualification and excellence in practice; need of investing in technology of organ transplant; and donors seen as human beings and holders of human rights. Participants understand that family participation is decisive in the donation process, although interactions between the family members and the physicians are difficult because of the sensitive nature of the situation. The physicians often felt ill-prepared to openly discuss the topic of brain death and organ donation. Educational programs for physicians and family members may assist with this difficult process.
Female reproductive system of the decapitating fly Pseudacteon wasmanni Schmitz (Diptera : Phoridae)
Resumo:
Pseudacteon wasmanni is a South American decapitating fly that parasitizes workers of Solenopsis fire ants. We used light microscopy (historesin serial-sectioning stained with Haematoxylin/Eosin) and scanning electron microscopy to show and analyze internal and whole external views of the female reproductive system. All specimens analyzed (n = 9) by light microscopy showed post-vitellogenic oocytes inside the ovaries. The lack of typical follicles (oocyte-nurse cell complexes) in all specimens suggests that oogenesis occurs during the pupal stage. The total number of eggs found ranged from 31 to 280 (X = 142 +/- 73, SD). The egg has a slugform or torpedo shape (about 130 by 20 mum) with a pointed apex at the posterior pole as defined by the fly; the micropyle appears to be in a depression or invagination at the anterior pole. An acute hypodermic-like ovipositor is evaginated from the hard sclerotized external genitalia during egg laying. The existence of a muscular bulb associated with the end of the common oviduct suggests that the egg is injected into the ant's body by a strong contraction of the bulb which probably is stimulated by bending of several ventral sensilla. During contraction, the abdomen extends out along a large fold between the sixth and seventh tergites in such a way that the sclerotized genitalia is rotated ventrally into a slightly anterior orientation in preparation for oviposition. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The total number and distribution per antennal flagellomere of sensilla placodea (olfactory disks), sensilla coeloconica, sensilla ampullacea and sensilla campaniformia were determined in workers of Nannotrigona testaceicornis Lepeletier a stingless bee species quite common in Brazil. The distribution of the sensilla was uniform, with the largest number occurring in flagellomere 10 and gradually decreasing in the direction of the basal flagellomeres in a way similar to that observed in Scaptotrigona postica Latreille.Nannotrigona testaceicornis had a larger number of sensilla ampullacea and a smaller number of sensilla coeloconica and sensilla campaniformia than Scaptotrigona postica. Although Nan notrigona testaceicornis does not communicate through the formation of pheromone trails, this species presents a larger quantity of sensilla placodea (relative to the length of the flagellum) than Scaptotrigona postica.
Resumo:
The sternal gland is considered the only source of trail pheromones in termites. The morphology of the sternal gland was investigated in workers of Coptotermes gestroi using transmission and scanning electron microscopy. The results showed a small bilobed gland at the anterior part of the fifth abdominal sternite. The cuticular surface of the sternal gland showed a V-shaped structure with two peg sensilla in elevated socket and various campaniform sensilla. Pores and cuticular scale-like protuberances also occur in the glandular area. The ultrastructure showed a gland composed of class I cells and two different types of class 3 cells distinguished by location, different size and electron-density of secretory vesicles. Small class 3 cells (type 1) of the anterior lobe are inserted among class I cells and have weakly electron-dense vesicles associated with mitochondria, glycogen and smooth endoplasmic reticulum. The class 3 cells (type 2) of posterior lobe showed many round electron-lucent vesicles of secretion, abundant free ribosomes and a well-developed Golgi apparatus. Each class 3 cell is connected to the cuticle by a cuticular duct constituted by the receiving canal and the conducting canal. The secretion of class I cells is stored in an inner subcuticular reservoir that is delimited by the microvilli of these cells. This inner reservoir is large and crossed by the campaniform sensilla and ducts of two types of class 3 cells that open outside of the insect body. An exterior reservoir also is present between the fourth and fifth sternite. The complex structure of the sternal gland suggests multicomponents for the trail pheromone in the worker of C gestroi. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)