979 resultados para Ceramic material


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The expansion and maintenance of electricity distribution networks generates large amounts of waste, much of it in the form of discarded insulators that are not reused or recycled. This paper describes the results of tests on used and new ceramic and polymeric insulators to verify if their exposure to weathering justifies their replacement. In new and used ceramic insulators, properties such as contact angle, relative density, porosimetry, dilatometry and X-ray diffraction patterns showed no differences or the differences that were found could not be related to their use. The discarded ceramic material showed high thermal stability, an interesting characteristic for application as chamotte. It can also be reused to replace gravel used in substations. In polymeric insulators, thermogravimetry, differential scanning calorimetry and relative density test results suggest degradation of used material compared to new. This would justify their replacement and discard as waste, but they show little recycling potential.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a proposal to create a Polo Ceramic Craft in the town of Indiana - SP, through the potter’s organization in a cooperative that will coordinate activities to add value to ceramic pieces. To achieve this, two things are essential: improving the ceramic body and improve the properties of the ceramic material. For the first action it’s necessary to create a Central Mass Production of Ceramics, to provide raw materials and homogeneous composition that results in differentiated ceramic after burning process (sintering). To this end, we propose the incorporation of additives (which act as fluxes) to the clay material. These additives can be mineral such as feldspar and nefelinas or leavings, such as glass powder obtained from disposable containers. For the second action is necessary to acquire an oven, electric or gas, it reaches higher temperatures (around 1200 ° C). The presence of the additive and burning at higher temperatures will enable better production of sintered ceramic material with less porosity and water absorption and higher mechanical strength, and pieces vitrified and glazed, allowing them to assign a higher value. For the production of these materials (thinner walls) requires a smaller volume of clayey raw materials. Besides benefiting the ceramic pieces, the proposed changes reduce the environmental impact caused by burning wood, since it will be replaced by natural gas (or electricity), and even will reduce the disposal of glass containers in the environment by recycling and incorporating this material in the clay. From a social standpoint, the cooperative is crucial to the viability of the proposed project, to coordinate activities and commercial production, which will result in better wages and profits for companies and consequently for the city and its population

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of ceramic materials is constantly evolving, especially in research related to advanced ceramics. Once these have many applications, this paper relates to synthesis by solid state reaction of calcium copper titanate (CCTO) ceramic material means doping with strontium. The powders were characterized using thermal analysis techniques such as TG (thermogravimetry), DTA (differencial thermal analysis), dilatometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The compositions have submitted weight loss at around 6% with respect to carbonates used, and was attributed a temperature of 950° C to perform the calcination according to thermogravimetric analysis. After the process of calcination and milling, the particles presented approximately spherical shapes and high percentages of substitution Ca2+ with Sr2+ was evident by the presence of necks between to particles due to the milling calcination. Analyses with Energy Dispersive Spectroscopy (EDS) showed stoichiometries in different samples very similar to the theoretical stoichiometry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although ceramics present high compressive strength, they are brittle materials due to their low tensile strength so they have lower capacity to absorb shocks. This study evaluated the fracture toughness of different ceramic systems, which refers to the ability of a friable material to absorb defformation energy. Three ceramic systems were investigated. Ten cylindrical samples (5,0mm x 3,0mm), were obtained from each ceramic material as follows: G1- 10 samples of Vitadur Alpha (Vita-Zahnfabrik); G2- 10 samples of IPS Empress2 (Ivoclar-Vivadent); G3- 10 samples of In-Ceram Alumina (Vita-Zahnfabrik). Fracture toughness values were collected upon indentation tests that were performed under a heavy load. A microhardness tester (Digital Microhardness Tester FM) utilized a 500gf load cell during 10seconds to perform four impressions on each sample. Statistically significant results were observed (ANOVA and Kruskal-Wallis tests). In-Ceram Alumina presented the highest median toughness values (2,96N/m3/2), followed by Vitadur Alpha (2,08N/m3/2) and IPS Empress2 (1,05N/m3/2). It may be concluded that different ceramic systems present distinct fracture toughness values, thus In-Ceram is capable of absorbing superior stress when compared to Vitadur Alpha and IPS Empress2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is part of several research related to the plan of design and construction of a sustainable house. The previous researches focused on sustainable materials and it have shown that ceramic material are more interesting to improve the thermal comfort and the reduction of fees and prices of the house, making possible to construct popular home, mainly clay bricks, that have high thermal inertia and low costs, besides the fact that it is easy to find the raw materials in nature and process them. However, a major issue in using clay bricks is that it uses too many energy to be processed during the sintering (burning), a crucial part of the process that assures mechanical resistance. Alternative materials are being proposed by the researchers, as the clay bricks without the sintering mixed with Portland cement, assuring the proper resistance to the brick. Raw materials of cement, however, also need to be thermally processed in rotary kilns, in a process called clinckerization. This research was proposed for comparing the energy used by the two types of bricks and other objectives, in order to determinate which one uses less thermal energy. The intention was to compare the energy used during the sintering of regular clay bricks and the unfired bricks with 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of Portland cement. The paper also investigated and compared the use of electrical and thermal energy of all the bricks to identify how important were the thermal stages (sintering or clinkerization) relatively to the total energy spent. At last, a resumed analysis was performed to identify the possible health damages of the many life cycles of the bricks. The conclusion was that unfired bricks with less than 40% of cement use less thermal energy to be processed. In addition, their carbon dioxides emissions were less dangerous to ... (Complete abastract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis focuses on the ceramic process for the production of optical grade transparent materials to be used as laser hosts. In order to be transparent a ceramic material must exhibit a very low concentration of defects. Defects are mainly represented by secondary or grain boundary phases and by residual pores. The strict control of the stoichiometry is mandatory to avoid the formation of secondary phases, whereas residual pores need to be below 150 ppm. In order to fulfill these requirements specific experimental conditions must be combined together. In addition powders need to be nanometric or at least sub-micrometric and extremely pure. On the other hand, nanometric powders aggregate easily and this leads to a poor, not homogeneous packing during shaping by pressing and to the formation of residual pores during sintering. Very fine powders are also difficult to handle and tend to absorb water on the surface. Finally, the powder manipulation (weighting operations, solvent removal, spray drying, shaping, etc), easily introduces impurities. All these features must be fully controlled in order to avoid the formation of defects that work as scattering sources thus decreasing the transparency of the material. The important role played by the processing on the transparency of ceramic materials is often underestimated. In the literature a high level of transparency has been reported by many authors but the description of the experimental process, in particular of the powder treatment and shaping, is seldom extensively described and important information that are necessary to reproduce the described results are often missing. The main goal of the present study therefore is to give additional information on the way the experimental features affect the microstructural evolution of YAG-based ceramics and thus the final properties, in particular transparency. Commercial powders are used to prepare YAG materials doped with Nd or Yb by reactive sintering under high vacuum. These dopants have been selected as the more appropriate for high energy and high peak power lasers. As far as it concerns the powder treatment, the thesis focuses on the influence of the solvent removal technique (rotavapor versus spray drying of suspensions in ethanol), the ball milling duration and speed, suspension concentration, solvent ratio, type and amount of dispersant. The influence of the powder type and process on the powder packing as well as the pressure conditions during shaping by pressing are also described. Finally calcination, sintering under high vacuum and in clean atmosphere, and post sintering cycles are studied and related to the final microstructure analyzed by SEM-EDS and HR-TEM, and to the optical and laser properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kafir Kala is a key-site to understand the historical dynamics of the Samarkand Region in the Early Middle Ages (5th - 8th centuries CE). The site is clearly associated with a Sogdian occupation, as both literature and archaeological research testify. But the chronological phase that follows the Sogdian period, as the Islamic occupation became stable, is still little known. Structures and finds (an hoard of 133 silver coins, in particular) clearly testify a new occupation of some parts of the citadel; and some rooms, dug in the northern side of it, present structures and materials connected with an Islamic activity. The study of material culture from these rooms, and from more ancient contexts, will help to understand the eventual continuity of traditions and the new productions. Besides the citadel, as a matter of fact, also some kilns have been dug, near the main site. Their material culture is very interesting because it represents an example of the typical Sogdian production (ceramics covered with white mica, and stamped). The work on the ceramic material has consisted in cataloguing and classifying all the diagnostics. Three main morphological classes have been individuated: cooking, coarse and table ware), and some other ones (lamps, ossuaries). A catalogue of the finds organized them in a typological system based on their morphology, function, fabric, and eventually decoration style. Crossing the stratigraphical data with information from this typological study, it has been possible to provide a chronological arrangement of the sites investigated by the italo-uzbek archaeological mission from 2001 to 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research of new advanced processes for syngas production is a part of a European project for the production of a new Gas to Liquid Process (NextGTL). The crucial points in the production of GTL process are the energy required for the air separation used in autothermal reforming or the heat required for steam reforming and the efficiency in carbon utilization. Therefore a new multistep oxy-reforming process scheme was developed at lower temperature with intermediate H2 membrane separation to improve the crucial parameter. The process is characterized by a S/C of 0.7 and O2/C of 0.21 having a smoothed temperature profile in which kinetic regime is easily obtained. Active catalysts for low temperature oxy-reforming process have been studied working at low pressure to discriminate among the catalyst and at high pressure to prove it on industrial condition. It allows the selection of the Rh as active phase among single and bimetallic VIII group metal. The study of the matrix composition and thermal treatment has been carried out on Rh-Mg/Al hydrotalcite selected as reference catalyst. The research to optimize the catalyst lead to enhanced performances through the identification of a limitation of the Rh reduction from the oxides matrix as key point to increase the Rh performances. The Rh loading have been studied to allow the catalyst scale up for pilot process in Chieti in a shape of Rh-HT on honeycomb ceramic material. The developed catalyst has enhanced methane conversion in a inch diameter monolith reactor if compared with the semi-industrial catalyst chosen in the project as the best reference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mössbauer Spektroskopie ist ein unverzichtbares Instrument für die Bestimmung von Oxidationszuständen und für die Analyse von lokalen Ordnungsphänomenen von Mössbauer aktiven Atomen. Weil es sich um eine lokale Methode handelt können sowohl kristalline als auch amorphe Materialien untersucht werden. Die Kombination von lokaler Prüfung mit Mössbauer Spektroskopie und globaler Untersuchung z.B. mit Röntgendiffraktometrie ermöglicht die Studie von Ordnungseffekten von statistisch besetzten Positionen in einer geordneten Matrix. Das wurde hier eingesetzt um die lokale Umgebung in zwei Serien von Heuslerverbindungen, Co2-xFe1+xSi and Co2Mn1-xFexAl zu untersuchen. Für die Co2Mn1-xFexAl Serie wurde eine L21 geordnete Phase in einer insgesamt B2 geordneten Probe detektiert. Ein Wechsel von der AlCu2Mn zu der CuHg2Ti Struktur wurde für die Co2-xFe1+xSi Proben gefunden. Die Transformation von einem Glas zu einem keramischen Material wurde mit 119Sn Mössbauer Spektroskopie untersucht. Die höhere Ordnung in der Keramik wurde von einer kleiner werdenden Mössbauerlinienbreite begleitet. Demzufolge geben die Modifikationen der Sn Umgebungen klar die Transformation des gesamten Materials wieder. Ist die lokale Umgebung von unregelmäßig auftretenden Atomen in einer amorphen Matrix von Interesse, sind lokal prüfende Methoden die zuverlässigsten Methoden die zur Verfügung stehen. In dieser Arbeit wurde 119Sn Mössbauer Spektroskopie eingesetzt um die Oxidationszustände, die lokalen Umgebungen und relativen Intensitäten von Zinn Atomen in einer Silikatmatrix zu bestimmen. Modifikationen dieser Parameter als Funktion von Prozess bestimmenden Parametern wie der Sauerstoffpartialdruck, die Temperatur, die Behandlungsdauer und der Abkühlprozess genauso wie der SnO2 Gehalt sind von Interesse, weil durch Reduktions- und Diffusionsprozesse Änderungen des Koordinations- und des Oxidationszustands der Zinnatome auftreten. Da diese Änderungen in der Glasmatrix verursachen, die das fertige Produkt im industriellen Fertigungsprozess ruinieren können sind diese feinen Veränderungen sehr wichtig. Wenigstens zwei Mössbauerlinien korrespondierend mit zwei verschiedenen Umgebungen für Sn2+ und Sn4+ sind für eine Analyse mit ausreichender Qualität notwendig. Durch Vergleich von den bestimmten Hyperfein Parametern mit den Parametern von Modelsubstanzen werden lokale Umgebungen der Zinnatome entworfen. Für Sn2+ werden zwei auf einer trigonalen Pyramide basierende Umgebungen mit variierender Anzahl von bindenden und nicht-bindenden Sauerstoffatomen formuliert. Für Sn4+ wurde eine tetraedrische und eine oktaedrische Umgebung postuliert. Die relativen Intensitäten der vier Mössbauerlinien wurden um ein Diffusions- und Reaktionsmodell zu entwickeln und um einen Satz von Diffusions- und Transferkoeffizienten zu bestimmen eingesetzt. Die bestimmten Diffusionskoeffizienten stimmen mit den Literaturdaten überein. Der Massentransferkoeffizient ist kleiner als der bestimmte Wert, aber immer noch in der gleichen Größenordnung. Im Gegensatz zu den Erwartungen ist der präsentierte Diffusionskoeffizient für Sn4+ bestimmt als der von Sn2+. Das wiederum kann durch Berücksichtigung von Elektronhoppingprozessen erklärt werden.