877 resultados para Centre for Theoretical Studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction mechanism of Pt(0)-catalyzed diboration reaction of allenes is investigated by the density functional method B3LYP. The overall reaction mechanism is examined. The electronic mechanisms of the allene insertion into the Pt-B bond are discussed in terms of the electron donation, back-donation, and d-pi interaction. During allene insertion into the Pt-B bond, the internal carbon atom of allene is preferred over the terminal one due to the stronger electron back-donation and stronger charge transfer in the former case than that in the latter one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel diimine rhenium(I) carbonyl complexes with the formula [Re(CO)(3)(L) Br], where L = 2-(4-(9H-carbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (P1), 2-(4-(3,6-di-tert-butyl-9H-carbazol-9-yl) phenyl)-1H-imidazo-[4,5-f][1,10] phenanthroline (P2), 2-(4-(6-(9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D1), and 2-(4-(3', 6'-di-tert-butyl-6-(3,6-di-tert-butyl-9H-carbazol-9-yl)-9H-3,9'-bicarbazol-9-yl) phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (D2), have been successfully synthesized and fully characterized by (HNMR)-H-1, IR, and UV-Vis, etc. The luminescence quantum yields (LQYs) of the parent Re(I) complexes P1 and P2 are 0.13 and 0.16, respectively, which are much higher than the previously reported Re(I) dendrimers. The HOMOs and the LUMOs of P1 and P2 are calculated to be mainly composed of [d(Re) + pi(CO + Br)] and pi*(L) orbital, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel diimine Cu(I)complex [Cu(ABPQ)(DPEphos)]BF4 [ABPQ and DPEphos are acenaphtho[1,2-b]bipyrido[2,3-h:3,2-f]quinoxaline and bis(2-(diphenylphosphanyl)phenyl) ether, respectively] is synthesized, and its photophysical properties are experimentally and theoretically characterized. The emission bands centered at ca. 400/470 and 550 nm of [Cu(ABPQ)(DPEphos)]BF4 are attributed to the ligand-centered pi -> pi* transition and the metal-to-ligand charge transfer d pi(Cu) -> pi*(N-N) transition, respectively. The luminescence quantum yield of [Cu(ABPQ)(DPEphos)]BF4 in CHCl3 is found to be about five times higher than that of [Cu(Phen)(DPEphos)]BF4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two bromo rhenium(I) carbonyl complexes with the formula of [Re(CO)(3)(L)Br], where L = 1,10-phenanthroline (Phen-Re) and 5-(1H-pyrrol-1-yl)-1,10-phenanthroline (Pyph-Re), were successfully synthesized with the aim to analyze the effect of the pyrrole (Py) moiety on the photophysical properties of Pyph-Re. It was found that the triplet metal-to-ligand charge-transfer d pi (Re) --> pi*(N-N) emission of Phen-Re and Pyph-Re centered at ca. 527 nm with the luminescence quantum yield (LQY) of 0.015 and ca. 578 nm with the LQY of 0.011, respectively. At the same time, the geometrical structures of the ground state and the absorption spectral properties of Phen-Re and Pyph-Re were also calculated with the 6-31G* basis set employed on C, H, N, O, and Br atoms, and LANL2DZ adopted on Re atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a quantum-chemical study of electronic, optical and charge transporting properties of four platinum (II) complexes, pt((CN)-N-Lambda)(2) ((CN)-N-Lambda=phenylpyridine or thiophenepyridine). The lowest-lying absorptions at 442, 440, 447 and 429 nm are all attributed to the mixed transition characters of metal-to-ligand charge transfer (MLCT) and ligand-centered (LC) pi - pi(*) transition. While, unexpectedly, the lowest-lying phosphorescent emissions at 663, 660, 675 and 742 nm are mainly from metal-to-ligand charge transfer ((MLCT)-M-3) ligand-centered (LC) pi ->pi* transition. Ionization potential (IP), electron affinities (EA) and reorganization energy P (lambda(hole/electron)) were obtained to evaluate the charge transfer and balance properties between hole and electron.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic mechanism for the oxidation of primary alcohols catalyzed by the two functional models of galactose oxidase (GOase), M-II L (M = Cu, Zn; L = N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)1-2-diiminoquinone)), has been studied by use of the density functional method B3LYP The catalytic cycle of Cu- and Zn-catalysts consists of two parts, namely, substrate oxidation (primary alcohol oxidation) and O-2 reduction (catalyst regeneration). The catalytic mechanisms have been studied for the two reaction pathways (route 1 and route 2). The calculations indicate that the hydrogen atom transfer within the substrate oxidation part is the rate-determining step for both catalysts, in agreement with the experimental observation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the acetyl cation CH3-C-+=O (m/z 43) and formylmethyl cation (CH2)-C-+-CH=O (m/z 43, or oxiranyl cation), generated from the self-chemical ionization of acetone and vinyl acetate, respectively, were studied in the ion source of a mass spectrometer. Adduct cations [C60C2H3O](+) (m/z 763) and protonated C-60, [C60H](+) (m/z 721), were observed as the major products. AM1 semiempirical molecular orbital calculations on the possible structures, stabilities and charge locations of the isomers of the adducts [C60C2H3O](+) were carried out at the restricted Hartree-Fock level. The results indicated that the sigma-addition product [C-60-COCH3](+) is the most stable adduct for the reaction of C-60 with CH3-C-+=O rather than that resulting from the [2+2] cycloaddition. The [2+3] cycloadduct and the sigma-adduct [C60CH2CHO](+) might be the most possible coexisting products for the reactions of C-60 with (CH2)-C-+-CH=O or oxiranyl cation. Other [C60C2H3O](+) isomers are also discussed. (C) 1997 by John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclization process of a new organosulfur reaction was studied by the MNDO (UHF) method. The first reaction path was assumed to be via the organosulfur radical intermediate, the second via the ionic (cationic and anionic) intermediates. The dehydroxylation process was assumed to occur with the synergistic cyclization. The results obtained indicate that the potential energy barrier of the first reaction path was about 102 kcal mol(-1), and although the formation of the ionic intermediate is comparatively difficult, the potential energy barrier of the second path is comparable to the first. The sequential reaction path via the radical intermediate, i.e. first cyclization, then dehydroxylation, was investigated for comparison. The cyclization reaction was found to be the thermodynamically favored process, while the ensuing dehydroxylation process was found to have a potential energy barrier of about 62 kcal mol(-1).