935 resultados para Central-peripheral spaces
Resumo:
Fatigue frequently occurs in myotonic dystrophy type 1 (DM1), but its pathophysiology remains unclear. This study assessed central and peripheral components of exercise-related fatigability in patients with DM1, compared to controls.
Resumo:
PURPOSE: To test the hypothesis that hyporeflective spaces in the neuroretina found on optical coherence tomography (OCT) examination have different optical reflectivities according to whether they are associated with exudation or degeneration. METHODS: Retrospective analysis of eyes with idiopathic perifoveal telangiectasia (IPT), diabetic macular edema (DME), idiopathic central serous chorioretinopathy (CSC), retinitis pigmentosa (RP), or cone dystrophy (CD) and eyes of healthy control subjects. OCT scans were performed. Raw scan data were exported and used to calculate light reflectivity profiles. Reflectivity data were acquired by projecting three rectangular boxes, each 50 pixels long and 5 pixels wide, into the intraretinal cystoid spaces, centrally onto unaffected peripheral RPE, and onto the prefoveolar vitreous. Light reflectivity in the retinal pigment epithelium (RPE), vitreous, and intraretinal spaces for the different retinal conditions and control subjects were compared. RESULTS: Reflectivities of the vitreous and the RPE were similar among the groups. Hyporeflective spaces in eyes with exudation (DME, RP, and CSC) had higher reflectivity compared with the mean reflectivity of the vitreous, whereas the cystoid spaces in the maculae of the eyes without exudation (CD and IPT) had a lower reflectivity than did the normal vitreous. CONCLUSIONS: Analysis of the light reflectivity profiles may be a tool to determine whether the density of hyporeflective spaces in the macula is greater or less than that of the vitreous, and may be a way to differentiate degenerative from exudative macular disease.
Resumo:
Myc family genes are often deregulated in embryonal tumors of childhood including medulloblastoma and neuroblastoma and are frequently associated with aggressive, poorly differentiated tumors. The Myc protein is a transcription factor that regulates a variety of cellular processes including cell growth and proliferation, cell cycle progression, differentiation, apoptosis, and cell motility. Potential strategies that either inhibit the proliferation-promoting effect of Myc and/or activate its pro-apoptotic function are presently being explored. In this review, we will give an overview of Myc activation in embryonal tumors and discuss current strategies aimed at targeting Myc for cancer treatment.
Resumo:
Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.
Resumo:
Recent data have identified leptin as an afferent signal in a negative-feedback loop regulating the mass of the adipose tissue. High leptin levels are observed in obese humans and rodents, suggesting that, in some cases, obesity is the result of leptin insensitivity. This hypothesis was tested by comparing the response to peripherally and centrally administered leptin among lean and three obese strains of mice: diet-induced obese AKR/J, New Zealand Obese (NZO), and Ay. Subcutaneous leptin infusion to lean mice resulted in a dose-dependent loss of body weight at physiologic plasma levels. Chronic infusions of leptin intracerebroventricularly (i.c.v.) at doses of 3 ng/hr or greater resulted in complete depletion of visible adipose tissue, which was maintained throughout 30 days of continuous i.c.v. infusion. Direct measurement of energy balance indicated that leptin treatment did not increase total energy expenditure but prevented the decrease that follows reduced food intake. Diet-induced obese mice lost weight in response to peripheral leptin but were less sensitive than lean mice. NZO mice were unresponsive to peripheral leptin but were responsive to i.c.v. leptin. Ay mice did not respond to subcutaneous leptin and were 1/100 as sensitive to i.c.v. leptin. The decreased response to leptin in diet-induced obese, NZO, and Ay mice suggests that obesity in these strains is the result of leptin resistance. In NZO mice, leptin resistance may be the result of decreased transport of leptin into the cerebrospinal fluid, whereas in Ay mice, leptin resistance probably results from defects downstream of the leptin receptor in the hypothalamus.
Resumo:
In this study we investigate the mRNA expression of inhibitory factor κBα (IκBα) in cells of the rat brain induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). IκB controls the activity of nuclear factor κB, which regulates the transcription of many immune signal molecules. The detection of IκB induction, therefore, would reveal the extent and the cellular location of brain-derived immune molecules in response to peripheral immune challenges. Low levels of IκBα mRNA were found in the large blood vessels and in circumventricular organs (CVOs) of saline-injected control animals. After an i.p. LPS injection (2.5 mg/kg), dramatic induction of IκBα mRNA occurred in four spatio-temporal patterns. Induced signals were first detected at 0.5 hr in the lumen of large blood vessels and in blood vessels of the choroid plexus and CVOs. Second, at 1–2 hr, labeling dramatically increased in the CVOs and choroid plexus and spread to small vascular and glial cells throughout the entire brain; these responses peaked at 2 hr and declined thereafter. Third, cells of the meninges became activated at 2 hr and persisted until 12 hr after the LPS injection. Finally, only at 12 hr, induced signals were present in ventricular ependyma. Thus, IκBα mRNA is induced in brain after peripheral LPS injection, beginning in cells lining the blood side of the blood–brain barrier and progressing to cells inside brain. The spatiotemporal patterns suggest that cells of the blood–brain barrier synthesize immune signal molecules to activate cells inside the central nervous system in response to peripheral LPS. The cerebrospinal fluid appears to be a conduit for these signal molecules.
Resumo:
The lipid bilayer of the myelin membrane of the central nervous system (CNS) and the peripheral nervous system (PNS) contains the oligodendrocyte- and Schwann cell-specific glycosphingolipids galactocerebrosides (GalC) and GalC-derived sulfatides (sGalC). We have generated a UDP-galactose ceramide galactosyltransferase (CGT) null mutant mouse (cgt−/−) with CNS and PNS myelin completely depleted of GalC and derived sGalC. Oligodendrocytes and Schwann cells are unable to restore the structure and function of these galactosphingolipids to maintain the insulator function of the membrane bilayer. The velocity of nerve conduction of homozygous cgt−/− mice is reduced to that of unmyelinated axons. This indicates a severely altered ion permeability of the lipid bilayer. GalC and sGalC are essential for the unperturbed lipid bilayer of the myelin membrane of CNS and PNS. The severe dysmyelinosis leads to death of the cgt−/− mouse at the end of the myelination period.
Resumo:
Cover title.
Resumo:
An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Peer reviewed
Resumo:
International audience
Resumo:
There is a growing body of literature within social and cultural geography that explores notions of place, space, culture, race and identity. The more recent works suggest that places are experienced and understood in multiple ways and are embedded within an array of politics. Memmott and Long, who have undertaken place-based research with Australian Indigenous people, present the theoretical position that ‘place is made and takes on meaning through an interaction process involving mutual accommodation between people and the environment’. They outline that places and their cultural meanings are generated through one or a combination of three types of people–environment interactions. These include: a place that is created by altering the physical characteristics of a piece of environment and which might encompass a feature or features which are natural or made; a place that is created totally through behaviour that is carried out within a specific area, therefore that specific behaviour becomes connected to that specific place; and a place created by people moving or being moved from one environment to another and establishing a new place where boundaries are created and activities carried out. All these ideas of places are challenged and confirmed by what Indigenous women have said about their particular use of, and relationship with, space within several health services in Rockhampton, Central Queensland. As my title suggests, Indigenous women do not see themselves as ‘neutral’ or ‘non-racialised’ citizens who enter and ‘use’ a supposedly neutral health service. Instead, Aboriginal women demonstrate they are active recognisers of places that would identify them within the particular health place. That is, they as Aboriginal women didn’t just ‘make’ place, the places and spaces ‘make’ them. The health services were identified as sites within which spatial relations could begin to grow with recognition of themselves as Aboriginal women in place, or instead create a sense of marginality in the failure of the spaces to identify them. The women’s voices within this paper are drawn from interviews undertaken with twenty Aboriginal women in Rockhampton, Central Queensland, Australia, who participated in a research project exploring ‘how the relationship between health services and Aboriginal women can be more empowering from the viewpoints of Aboriginal women’. The assumption underpinning this study was that empowering and re-empowering practices for Aboriginal women can lead to improved health outcomes. Throughout the interviews women shared some of their lived realities including some of their thoughts on identity, the body, employment in the health sector, service delivery and their notions of health service spaces and places. Their thoughts on health service spaces and places provide an understanding of the lived reality for Aboriginal women and are explored and incorporated within this paper.
Resumo:
Web 1.0 referred to the early, read-only internet; Web 2.0 refers to the ‘read-write web’ in which users actively contribute to as well as consume online content; Web 3.0 is now being used to refer to the convergence of mobile and Web 2.0 technologies and applications. One of the most important developments in mobile 3.0 is geography: with many mobile phones now equipped with GPS, mobiles promise to “bring the internet down to earth” through geographically-aware, or locative media. The internet was earlier heralded as “the death of geography” with predictions that with anyone able to access information from anywhere, geography would no longer matter. But mobiles are disproving this. GPS allows the location of the user to be pinpointed, and the mobile internet allows the user to access locally-relevant information, or to upload content which is geotagged to the specific location. It also allows locally-specific content to be sent to the user when the user enters a specific space. Location-based services are one of the fastest-growing segments of the mobile internet market: the 2008 AIMIA report indicates that user access of local maps increased by 347% over the previous 12 months, and restaurant guides/reviews increased by 174%. The central tenet of cultural geography is that places are culturally-constructed, comprised of the physical space itself, culturally-inflected perceptions of that space, and people’s experiences of the space (LeFebvre 1991). This paper takes a cultural geographical approach to locative media, anatomising the various spaces which have emerged through locative media, or “the geoweb” (Lake 2004). The geoweb is such a new concept that to date, critical discourse has treated it as a somewhat homogenous spatial formation. In order to counter this, and in order to demonstrate the dynamic complexity of the emerging spaces of the geoweb, the paper provides a topography of different types of locative media space: including the personal/aesthetic in which individual users geotag specific physical sites with their own content and meanings; the commercial, like the billboards which speak to individuals as they pass in Minority Report; and the social, in which one’s location is defined by the proximity of friends rather than by geography.