990 resultados para Censored data
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Restricted breeding seasons used in beef cattle produce censored data for reproduction traits measured in regard to these seasons. To analyze these data, adequate methods must be used. The objective of this paper was to compare three approaches aiming to evaluate sexual precocity in Nellore cattle. The final data set contained 6699 records of age at first conception (AFC14) (in days) and of heifer pregnancy (HP14) (binary) obtained from females exposed to the bulls for the first time at about 14 months of age. Records of females that did not calve in the following year after being exposed to a sire were considered censored (77.5% of total). The models used to obtain genetic parameters and expected progeny differences (EPDs) were a Weibull mixed and a censored linear model for AFC14 and threshold model for HP14. The mean heritabilities obtained were 0.76 and 0.44, respectively, for survival and censored linear models (for AFC14), and 0.58 for HP14. Ranking and Pearson correlations varied (in absolute values) from 0.54 to 0.99 (considering different percentages of sires selected), indicating moderate changes in the classification. Considering survival analysis as the best selection criterion (that would result in the best response to selection), it was observed that selection for HP14 would lead to a more significant decrease in selection response if compared with selection for AFC14 analysed by censored linear model, from which results were very similar to the survival analysis.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The continuous trait age at subsequent rebreeding (ASR) was evaluated using survival analysis in Nellore breed cows that conceived for the first time at approximately 14 months of age. This methodology was chosen because the restricted breeding season produces censored data. The dataset contained 2885 records of ASR (in days). Records of females that did not produce calves in the following year after being exposed to a sire were considered censored (48.3% of the total). The statistical model used was a Weibull mixed survival model, which included fixed effects of contemporary groups (CG) and period and a random effect of individual animal. The effect of contemporary groups on ASR was significant (P < 0.01). Heritabilities obtained for ASR were 0.03 and 0.04 in logarithmic and original scales, respectively. These results indicate that the genetic selection response for subsequent reproduction of 2-year-old Nellore breed females is not expected to be effective based on survival analysis. Furthermore, these results suggest that environmental improvement is fundamental to this important trait. It should be highlighted that an increase in the average date of birth can produce an adverse effect in the future, since this cannot be compensated by genetic improvement.
Resumo:
In this paper, we propose a bivariate distribution for the bivariate survival times based on Farlie-Gumbel-Morgenstern copula to model the dependence on a bivariate survival data. The proposed model allows for the presence of censored data and covariates. For inferential purpose a Bayesian approach via Markov Chain Monte Carlo (MCMC) is considered. Further, some discussions on the model selection criteria are given. In order to examine outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated via a simulation study and a real dataset.
Resumo:
This paper introduces a skewed log-Birnbaum-Saunders regression model based on the skewed sinh-normal distribution proposed by Leiva et al. [A skewed sinh-normal distribution and its properties and application to air pollution, Comm. Statist. Theory Methods 39 (2010), pp. 426-443]. Some influence methods, such as the local influence and generalized leverage, are presented. Additionally, we derived the normal curvatures of local influence under some perturbation schemes. An empirical application to a real data set is presented in order to illustrate the usefulness of the proposed model.
Resumo:
The thesis focuses on the process of international openness of Transition Countries. This study provides a theoretical analysis based on reference literature, and an empirical analysis which is aimed at estimating some main effects of Foreign Direct Investment. Transition has represented a highly complex phenomenon, characterized by several aspects, whose interaction has shaped the developmental path of each country involved. Although the thesis focuses on economic issues it is outstanding to underline that Transition implies political, institutional, and even social deep changes, which must be taken into consideration in the general overview of the contex. The empirical part has been developed along two different ways: a country analysis and a firm analysis, thus allowing to widen the study and delve deeper into the use of econometric instruments. More specifically, in the first empirical stage both static (Fixed Effects) and dynamic (LSDV Corrected) methodologies have been implemented, whereas in the second stage the Cox Proportional Function has been chosen in order to handle with censored data.
Resumo:
The concordance probability is used to evaluate the discriminatory power and the predictive accuracy of nonlinear statistical models. We derive an analytic expression for the concordance probability in the Cox proportional hazards model. The proposed estimator is a function of the regression parameters and the covariate distribution only and does not use the observed event and censoring times. For this reason it is asymptotically unbiased, unlike Harrell's c-index based on informative pairs. The asymptotic distribution of the concordance probability estimate is derived using U-statistic theory and the methodology is applied to a predictive model in lung cancer.
Resumo:
Jewell and Kalbfleisch (1992) consider the use of marker processes for applications related to estimation of the survival distribution of time to failure. Marker processes were assumed to be stochastic processes that, at a given point in time, provide information about the current hazard and consequently on the remaining time to failure. Particular attention was paid to calculations based on a simple additive model for the relationship between the hazard function at time t and the history of the marker process up until time t. Specific applications to the analysis of AIDS data included the use of markers as surrogate responses for onset of AIDS with censored data and as predictors of the time elapsed since infection in prevalent individuals. Here we review recent work on the use of marker data to tackle these kinds of problems with AIDS data. The Poisson marker process with an additive model, introduced in Jewell and Kalbfleisch (1992) may be a useful "test" example for comparison of various procedures.
Resumo:
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.