295 resultados para Cementation
Resumo:
The occurrences of diapirs, gas-filled zones and gas plumes in seawater in Qiongdongnan Basin of South China Sea indicate that there may exist seepage system gas-hydrate reservoirs. Assuming there has a methane venting zone of 1500 m in diameter, and the methane flux is 1000 kmol/a, and the temperature of methane hydrate-bearing sediments ranges from 3 degrees C to 20 degrees C, then according to the hydrate film growth theory, by numerical simulation, this paper computes the temperatures and velocities in 0 mbsf, 100 mbsf, 200 mbsf, 425 mbsf over discrete length, and gives the change charts. The results show that the cementation velocity in sediments matrix of methane hydrate is about 0.2 nm/s, and the seepage system will evolve into diffusion system over probably 35000 years. Meanwhile, the methane hydrate growth velocity in leakage system is 20 similar to 40 times faster than in diffusion system.
Resumo:
Attenuations of different types of gas hydrate cementation in fluid-saturated porous solids are discussed. The factors affecting estimation of gas hydrate and free gas saturation are analyzed. It is suggested that porosity of sediment, the P wave velocity model and methods of calculating elastic modulus are key factors in the estimation of gas hydrate and free gas saturations. Attenuation of gas hydrate-bearing sediment is closely related with the cementation types of gas hydrate. Negative anomalies of quality factors indicate that gas hydrate deposits away from grain as part of fluid. Positive anomalies of the quality factors indicate that gas hydrate contacts with solid and changes the elastic modulus of matrix. Low frequency velocity and high frequency velocity models are used to estimate gas hydrate and free gas saturation in the Blake Ridge area according to the well log data of the hole 995 in ODP leg 164. The gas hydrate saturation obtained by low frequency velocity is 10% similar to 20% of the pore space and free gas saturation is 0.5% similar to 1% of the pore space. The gas hydrate saturation obtained by high frequency velocity is 5% similar to 10% of the pore space and free gas saturation is 1% similar to 2% of the pore space.
Resumo:
In view of few researches into pore textures and anisotropy characteristics of Qiguzu-toutunhezu reservoir in Niuquanhu block in Santanghu Basin, in order to enhance the hydrocarbon recovery of the region of interest and improve the reservoir development effect, with the employment of the experiments like cast thin slice, scanning electron microscope, conventional high pressure mercury penetration, constant speed mercury penetration and nuclear magnetic resonance, the thesis makes a thorough research into pore texture characteristics and anisotropy characteristics of the sandstone reservoir. The research shows that the microscopic pore textures are complicated, the anisotropy is high and waterflood development water/oil displacement efficiency is low, which are mainly caused by the high microscopic anisotropy of the reservoir. Specially, the research shows that Qiguzu-toutunhezu reservoir belongs to braided delta front intrafacies, the intergranular pore is the main type of pores, which take up 65.50 percent of total pores, intergranular dissolved pores, feldspar dissolved pores and lithic dissolved pores are on the second place, and there are few carbonate dissolved pores. The reservoir belongs to mesopore-fine throat and mesopore-medium throat. The pore distribution of the sandstone reservoir is comparatively centralized. The reservoir inhomogeneity is mainly caused by the throat inhomogeneity. Diagenesis mainly includes compaction, cementation, metasomatism and dissolution. Compared with compaction, cementation exerts more direct impact on the decline of the porosity of the sandstone reservoir ( pore loss factor is 63.75 percent in the cementing process). Based on the classification of diagenetic stages, the reservoir diagenesis is on the stage of the late period of early diagenetic stage to early period of late diagenetic stage. The study area of the small sandstone reservoir layer of the anisotropy of the relatively strong; plane, the anisotropy of the relatively weak. microscopic anisotropy of its relatively strong.
Resumo:
The exploration and study in recent years shows that the upper Paleozoic in the east of Ordos Basin possesses major exploration potential, so it is necessary to have a comprehensive and synthetic research in this area. Following the guideline of T.A. Cross’s high resolution sequences stratigraphy and combined with sedimentology, the strata and sequence in the research area are divided and correlated. This paper emphasizes on the reservoir in this area and its major fruits are: Firstly, form the framework of the high sequence stratigraphy through mainly studying on the data of core, well drilling and field section combining. Then, think that the best reservoir formation mainly appears in the middle or lower part of long arising semi-cycle, and focus on A type and C1 middle sequence cycle that contributes to the development of formation. Next, think the sedimentary source mainly comes from the epimetamorphic crystalline basement in the north of the Ordoes Basin through analyzing depositional background, researching on sandstone petrography, distribution characteristics of the sedimentary system as well as researching on heavy mineral combination characteristics. Fourthly, give priority to Zizhou-Qingjian area for the first time and gain seven lithofacies paleography maps in the No.2 member of Shanxi and the No.8 member of Shihezi through using the method of isochronal lithofacies paleogeography mapping, then bring forth that Sh2 is mainly developed a type I sequence under the margin of ramp lake-basin background. Fifthly, through researching on the characteristics of reservoir petrography and diagenesis, think that all researched areas experienced compaction and cementation, and there is different types of rocks, only little of the primary pores that are made up of litharenite and lithoclastic quartz sandstone is left, while in lithoclastic quartz sandstone, there are still many primary pores Sixthly, through studying on pore types, microstructure, as well as physical property on the key formation, think that the researched area mostly appears typical low pore, low porosity and permeability, which mainly result from sedimentary and diagenesis. Lastly, through researching on classified evaluation in the key formation, productivity analysis, and combing with reservoir distribution, the researched area is divided into three parts, and think that exploration should be emphasized on formation I and II. The characteristics of sandstones distribution in Sh23 member, gas formation distribution and open flow capacity of exploitation well are all consistent properly with the results of reservoir comprehensive evaluation in this thesis proved by the gas production development in 2006.
Resumo:
The exploration in recent years shows that the Yanchang Formation in the southwest of Ordos Basin is of great resource potential and good exploration and exploitation prospect. In the thesis ,sedimentary source analysis,sedimentary system,sedimentary microfacies,sandstones distribution and reservoir characteristic are studied and favorable oil area are forecasted in Chang6-Chang8 of Yanchang formation in HuanXian region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on. The stratum of Chang6-Chang8 of Yanchang formation could be divided into pieces of member following the principles that firstly contrasting the big segments, then contrasting the small segments, being controlled by cycle and consulting the thickness etc.And the characteristic of stratum are detailed discussed , respectively. Based on the source direction of the central basin, heavy and light minerals are used to analyse source direction of Chang6 and Chang8 member, in HuanXian area. Research result shows that the source of Chang6 and Chang8 member is mixed provenance,including west-south,west and east-north. By the study of rock types、 sedimentary conformation、lithology and electromotive curve combination and palaeo-biology,lake、delta and braided delta mianly developed in study area are recognized, Subaqueous distributary channels in delta front and in braided delta front, and sand body in deep-lake turbidite, are the main reservoir.forthermore,the characteristic of depositional system and sandy body in space are discussed. Applied with routine microscope slice identification, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, Feldspar-lithic fine-sandstone and feldspar fine-sandstone are mainly sandstone of Y Chang6-Chang8 in Huanxian area, small pore and tiny pore are the main pore types, tiny throat type and micro-fine throat type are widely developed , secondary dissolution porosity, intercrystal porosity, tiny pore and micro-crack are main pore types.Intergranular porosity and dissolution porosity secondary is the main pore secondary. The dominant diagenesis types in the area are compaction, cementation, replacement and dissolution. Chlorite films cementation facies, carbonate cementation facies ,mud cementation compaction facie, compaction 、pressure solution facies are the main diagenetic facies,in which Chlorite films cementation facies is the best diagenetic facies in study area. Reservoir influence factor analysis ,rock types are the main factor forming this low-pore and low-permeability of Chang6-Chang8 member in study area,and relatively higher permeability area are cortrolled by sedimentary facies distribution, diagenesis improved reservoir physical property. According to the distributing of sedimentary micro-facies and sandy body , and the test oil, favorable region in Chang6-Chang8 are forecasted.
Resumo:
Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.
Resumo:
In this thesis, detailed studies on the sedimentology and petrophysical properties of reservoir rocks in the Shan#2 Member of Shanxi Formation, Zizhou gas field of Ordos Basin, are carried out, based on outcrop description, core description, wireline log interpretation and analysis of petrophysical properties. In the context of stratigraphic division scheme of the Upper Paleozoic in Ordos Basin, the Shan#2 Member is further divided into three subintervals: the Shan#23, Shan#22 and Shan#21, based on the marker beds,depositional cycles, wireline log patterns. Subaqueous deltaic-front distributary channels, distributed from the south to north, is identified,which is the main reservoir sand bodies for gases of Shan#2 Member at Zizhou gas field. Quartzose and lithic-quartzose sandstones, commonly with a high volume of cement, but a low volume of matrix, are the major reservoir rocks in the studied area. All sandstones have been evolved into the late diagenetic stage (referred to as diagenetic stage B) during the burial, experiencing compaction, cementation, replacement and dissolution, in which the compaction and cementation could have reduced the porosity, while dissolution could have improved the petrophysical properties. The pore types in the reservoirs are dominated by intergranular-solutional, intergranular-intercrystal and intercrystal-solutional porosity. According to the parameters and capillary pressure curves of test samples, five types of pore texture (I-V) are differentiated, in which types II and III pore textures displayed by low threshold pressure-wide pore throat and moderate threshold pressure-moderately wide pore throat, exist widespread. Sandstone reservoirs in the studied area are characterized by exceptionally low porosity and permeability, in which the petrophysical properties of those in Shan#23 horizon are relatively better. The petrophysical property of reservoirs was influenced both by the sedimentation and diagenesis. In general, the coarse quartzose sandstones deposited in subaqueous distributary channels show the best petrophysical property, which tends to be worse as the grain size decreases and lithic amount increases. Three types of gas reservoirs in Shan#23 horizon are classified according to petrophysical properties (porosity and permeability), which could have been influenced by the initial depositional facies, diagenesis and tectonics. On the basis of the study on the geological conditions of reservoirs in the area, it is concluded that sedimetary facies, diagenesis and tectonic actions can provide an important foundation for gas pool formation, which can also control the accumulation and distribution of gas reservoirs.
Resumo:
Migration carriers act as the “Bridges” connecting source rock and traps and play important roles in petroleum migration and accumulation system. Among various types of carriers, sandstone carrier constitutes the basis of carrier system consisting of connected sandstone bodies, of sand-bodies connected with other carriers, such as faults and/or unconformities. How do we understand sandstone carrier beyond the traditional reservoirs concept? How could we characterize quantitatively this kind of carriers for petroleum migration? Such subjects are important and difficult contents in dynamic studies on hydrocarbon migration and accumulation. Sandstone carrier of Chang 8 member in Longdong area of Ordos Basin is selected as the research target in this thesis. Through conducting integrated reservoir analysis on many single wells, the correlation between single sandstone thickness and oil thickness seems good. Sketch sandstone is defined in this thesis as the principal part of carrier based on systematical analysis on lithology and sandstone thickness. Geometry connectivity of sandstone bodies was identified by the spatial superposition among them and was proved by the oil property features in oilfields. The connectivity between sandstone carriers is also hydrodynamically studied by observing and analyzed various diagenetic phenomena, especially the authigenic minerals and their forming sequence. The results were used to characterize transporting capability of sandstone carriers during the key petroleum migration periods. It was found that compaction and cementation are main causes to reduce pore space, and resolution may but not so importantly increases pore space after the occurrence of first migration. The cements of ferrocalcite and kiesel seem like the efficient index to demonstrate the hydraulic connection among sandy bodies. Diagenetic sequence and its relationship with petroleum migration phases are analyzed. Sandstone carrier of Chang 8 member was then characterized by studying their pore space and permeable properties. The results show an average porosity and permeability of Chang 8 carriers are respectively 8% and 0.50md, belongs to low porosity - low permeability reservoirs. Further, the physical properties of Chang 81 member are commonly better than those of Chang 82 member. Methods to reconstruct property of sandstone carrier during petroleum migration phase (late Jurassic) are built based on diagenetic sequence. Planal porosity, porosity and permeability of sandstone carrier in this period are statistically analyzed. One combining index - product of thickness and ancient porosity - is selected as the idea parameter to characterize sandstone carrier of late Jurassic after contrast with other parameters. Reservoirs of Chang 8 member in Longdong area are lithological reservoir controlled by sand body in which oil layers in middle part are clamped with dry layers in upper and lower parts, in a sandwich way. Based a newly proposed “migration-diagensis-remigration” model in low permeability sandstone of Chang 8 member in Longdong area, oil migration and accumulation processes during different periods are simulated with the reconstructed sandstone carriers system. Results match well with current reservoir distributions. Finally, suggestions for next favorable exploration areas are given based on all research achievements.
Resumo:
Sedimentary provenance direction,sedimentary facies,reservoir geological characteristic,pore structure; physical property characteristic,reservoir classification and evaluation ,forthermore,favorable area area are forecasted of Yanchang formation in ZhiDan region, by mainly study on the data of field section observation ,core observation, well logging explaination and routine microscope slice identification,scanning Electron Microscope and reservoir analysis of lithology and physical property , Under the guidance of such advanced theories and methods as sedimentology,reservoir sedimentology,lithological oil pool and so on,in the thesis. The following fruits are mainly achieved in this paper: Yanchang formation stratum is divided and correlated in this entire region, and the characteristic of oil layer unit is detailed discussed , respectively. According to main marker bed and supplementary ones.and research result shows that the source of provenance direction during Yanchang Formation mianly is north-east. Delta and lake are mainly developed in study area ,sub-facies and micro-facies are divided,distribution of sedimentary micro-facies in plane and palaeogeographic evolution are described,and gentle slope type- shallow water delta depositional model is established. Fine-grain arkose sandstone is the main reservoir,and which have experienced such different degree diagenesis as compaction, cementation, replacement and dissolution, and in which compaction and cementation are mainly factors to reduce sandstone physical property and dissolution effectively improved physical property during burial diagenesis procedure. All reservoirs of Yanchang Formation have entered A period of late diagenetic stage according to scheme of diagenesis period division . Intergranular porosity,dissolution porosity,fissure porosity are main pore types. And porosity structure are analyse by mercury penetration capillary pressure parameter,fine-shortness type and fine- length throat type are mainly developed. as a whole,the reservoir, with the characteristic of porosity and permeability altering apparently,strong inhomogeneity , is a medium- porosity and medium permeability one. In plane,higher- porosity and higher-permeability are corresponded well with distributary channel area, physical property and inhomogeneity are affected by both deposition and diagenesis,and distributary channel and underwater distributary channel are favorable facies . According to such characteristic as lithology,physical property,pore structure ,diagenesis and sandstone distribution, the sandy reservoir can be classified 4 types, and the main sandy in every oil layer unit are evaluated according to the standard. The analysis result of petroleum concentration rule shows that Yanchang Formation are with not only favourable oil source rock,reservoir,covering combination ,but also good entrapment condition in study area. Lithology and structure-lithology oil pool are mainly developed ,based on condition of favorable reservoir developments,accounting for deliverability and sandstone superface elevation,zone of profitabilitis are forecasted.
Resumo:
Through field outcrop dolomite observation, laboratory petrography (macroscopy, microscopy, cathodeluminescence and scan electronic microscopy), geochemistry (carbon-oxygen-strontium isotopes and trace elements) and fluid inclusion microthermometry study in Keping-Bachu area of Tarim Basin, it can be inferred that there are existing eight dolomite texture types within four evolution phases in Keping-Bachu area of Tarim Basin. The paragenesis of different dolomite texture types and associated minerals in Keping-Bachu area has been established. The carbon and oxygen isotopes of saddle dolomites and matrix dolomites overlap greatly. The Strontium isotopes results of Keping-Bachu outcrop area show that the strontium isotopes differentiation of the matrix and saddle dolomites is not obvious, the reason of which is that there is thousands of Cambrian-Ordovician dolomite strata below the stratum bearing the saddle dolomite. In the process of the heat flow upward migration, the isotopes of the heat interacts with the host rock, which leads to the similarity betwwen the strontium of the saddle dolomite and matrix dolomite. The strontium isotope of the saddle dolomite is not very radiogenic. the six types samples within four phases in the study area show Eu negatively. Comparing to the other types of samples, the δEu of saddle dolomite is relatively high falling into the range of 0.510-0.874, which shows that the saddle dolomite forms in the hydrothermal setting and is affected by the hydrothermal activity to some extend.The Lan/Ybn of saddle dolomite is high up to 15.726, which means that the HREE is very rich. It belongs to the typical hydrothermal genesis model. The δCe of saddle dolomite is positive anomaly, which is the result of high effect from the land source debris. The homogeneous temperature of the saddle dolomite falls into two ranges 110-120℃ and 125-160℃, after pressure correction, they are 141-152℃,157.5-196℃, the salinity of the saddle dolomite can reach to 20-25%. With the comparing with the burial history, the Th of the saddle dolomite is high than the ambient strata temperature, these data show that the saddle dolomite is of hydrothermal origin. The evolution trend of different dolomite and associated minerals is from matrix dolomite, dolomite cementation, saddle dolomite, quartz to calcite. Alonging with this evolution trend, the temperature of the diagenetic flow initiated from 80-100℃, after rising to 135-160℃, then gradually declined. Finally, a structurally-controlled dolomitization model is established in Keping-Bachu area of Tarim Basin.
Resumo:
In Dongpu depression, there are obviously overpressure phenomena below 2000-3200m. Research to the relationship between sedimentation-diagenesis and overpressure of reservoirs is in great need. In this paper, after analyzing and simulating the overpressure in Wendong, Qiaokou and Baimiao regions, we draw a conclusion that the fast sedimentation since Low Tertiary is one of the most important mechanisms for the formation of overpressure in Dongpu Depression. The gypsum in northern part of Dongpu Depression is the good seal for the development of overpressure. On the base of detailed work to the distribution and magnitude of overpressure in Wen-qiao-Bai regions, we selected several wells that have different overpressure to find the sedimentary and diagenetic differences of these wells. We find that compaction is obviously inhibited in overpressured reservoirs, which results in the linear relation between physical properties of reservoirs and sedimentary parameters, such as sorting coefficient, the content of matrix, etc. Reservoirs with great magnitude of overpressure have undergone more extensive erosion than the ones with low magnitude of overpressure, which probably is the result of the great solubility of CO_2 under high pressure. The great burial depth, the high content of matrix and the extensively developed cement of carbonate are the most important factors that influence the physical properties of reservoirs in Dongpu depression. Overpressure plays a constructive role in the physical properties of reservoirs. the overpressured reservoirs of Es_3~3 subsection in Wendong region are probably the ones that have good physical properties. From homogenetic temperatures that obtained form the fluid inclusions in quartz overgrowth, we find that there were 4 episodes of fluid flows in Dongpu depression. In conjunction with the analysis of the burial history of overpressured reservoirs, we draw conclusions that the first, second and third episodes of fluid flows took place in the extensive rifting stage of Dongpu Depression, the burial depth when the first episode of fluid flow took place was about 1500m, the age was about 36 my; the burial depth of the second and third episodes of fluid flow was between 1800-3000m at that time, the age was between 35-28my. The fluid flows of the second, third, and fourth episodes were in close relation to the overpressure and maybe were the results of the episodic hydrofracturing of overpressured mudstones and shales. The episodic fluid flow of overpressured mudstones and shales probably facilitates the cementation of carbonate, which decreases the physical properties of overpressured reservoirs. The dolomites and ferrodolomites maybe the products of the episodic hydrofracturing of overpressured mudstones and shales.
Resumo:
Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.
Resumo:
Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.
Resumo:
The main research area of this thesis is Jiyang Depression in the Bohaiwan Basin and its southern margin. The object formation is Ordovician carbonate. The research is based on the outcrop observation and measurement of Ordovician carbonate and the drilling data of the oilfield. The internal reservoir characteristics of carbonate buried hill and its distribution were studied by comprehensive methods of sedimentology, reservoir geology and structural geology and technics of cathodoluminescence(CL)3electron microprobe,casting and C O isotope analysis etc. The influence depth of paleokarst facies formed during the Paleozoic is discriminated as 36-84m. The sollution porosity is well developed in paleokarst facies of Ordovician carbonate and is an important type of internal reservoir of buried hill. It may be infered that the fractures may be formed mainly during the Mesozoic and Cenozoic, they were not developed during the early Paleozoic when only micro-fractures might be created. The carbon and oxigen isotope analysis shows that the calcite cements in the fractures of Ordovician carbonate and secondary solution pores were related with meteoric water and three stages of fractures were divided. The reservoir space of Ordovician carbonate are mainly secondary porosity, cavern and fracture. The development of structural fracture was controlled by the lithology and tectonic background. More fractures exist in dolomite than that in limestone. There are also more fractures near the fault and the axis of fold. The development of porous reservoir is mainly controlled by the lithology and diagenesis, especially dolomitization and dissolution. It also results in the heterogeneity vertically. So the lithology is the basic factor for the forming of internal reservoir of buried hill and the tectogenesis and diagenesis are key factors to improve it. The porosity in carbonate might experienced solution-cementation-resolution or recementation. The porosity evolution history was a kind of historical dynamic equilibrium. The internal reservoir of Ordovician carbonate is the comprehensive result of constructive and/or destructive diagenesis. The worm's eye maps of the early Paleozoic and middle-upper Proterozoic were plotted. It was inferred that the paleostress field evoluted from NNW to NW during the Mesozoic and Cenozoic. Three types of buried hills can be divided: C-P/Pzi, Mz/ Pzi and E/ Pzi. The unconformity of the buried hill of E/ Pzi type, comparatively, was formed and reconstructed latestly, t he p orous r eservoir c ould b e w ell p reseved. T his c ondition w as v ery favorable t o t he migration and accumulation of oil and gas and could form upstanding association of source-reservoir-cap rocks. The buried hills of Mz/ Pzi and C-P/Pz] type were took second place.
Resumo:
Trabalho apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária.