978 resultados para Cellular-distribution
Resumo:
INTRODUCTION Agonistic antibodies targeting TRAIL-receptors 1 and 2 (TRAIL-R1 and TRAIL-R2) are being developed as a novel therapeutic approach in cancer therapy including pancreatic cancer. However, the cellular distribution of these receptors in primary pancreatic cancer samples has not been sufficiently investigated and no study has yet addressed the issue of their prognostic significance in this tumor entity. AIMS AND METHODS Applying tissue microarray (TMA) analysis, we performed an immunohistochemical assessment of TRAIL-receptors in surgical samples from 84 consecutive patients affected by pancreatic adenocarcinoma and in 26 additional selected specimens from patients with no lymph nodes metastasis at the time of surgery. The prognostic significance of membrane staining and staining intensity for TRAIL-receptors was evaluated. RESULTS The fraction of pancreatic cancer samples with positive membrane staining for TRAIL-R1 and TRAIL-R2 was lower than that of cells from surrounding non-tumor tissues (TRAIL-R1: p<0.001, TRAIL-R2: p = 0.006). In addition, subgroup analyses showed that loss of membrane staining for TRAIL-R2 was associated with poorer prognosis in patients without nodal metastases (multivariate Cox regression analysis, Hazard Ratio: 0.44 [95% confidence interval: 0.22-0.87]; p = 0.019). In contrast, analysis of decoy receptors TRAIL-R3 and -R4 in tumor samples showed an exclusively cytoplasmatic staining pattern and no prognostic relevance. CONCLUSION This is a first report on the prognostic significance of TRAIL-receptors expression in pancreatic cancer showing that TRAIL-R2 might represent a prognostic marker for patients with early stage disease. In addition, our data suggest that loss of membrane-bound TRAIL-receptors could represent a molecular mechanism for therapeutic failure upon administration of TRAIL-receptors-targeting antibodies in pancreatic cancer. This hypothesis should be evaluated in future clinical trials.
Resumo:
The nuclear antisense properties of a series of tricyclo(tc)-DNA oligonucleotide 9-15mers, targeted against the 3' and 5' splice sites of exon 4 of cyclophilin A (CyPA) pre-mRNA, were evaluated in HeLa cells and compared with those of corresponding LNA-oligonucleotides. While the 9mers showed no significant antisense effect, the 11-15mers induced exon 4 skipping and exon 3+4 double skipping to about an equal extent upon lipofectamine mediated transfection in a sequence and dose dependent manner, as revealed by a RT-PCR assay. The antisense efficacy of the tc-oligonucleotides was found to be superior to that of the LNA-oligonucleotides in all cases by a factor of at least 4-5. A tc-oligonucleotide 15mer completely abolished CyPA mRNA production at 0.2‘M concentration. The antisense effect was confirmed by western blot analysis which revealed a reduction of CyPA protein to 13% of its normal level. Fluorescence microscopic investigations with a fluorescein labeled tc-15mer revealed a strong propensity for homogeneous nuclear localization of this backbone type after lipofectamine mediated transfection, while the corresponding lna 15mer showed a less clear cellular distribution pattern. Transfection without lipid carrier showed no significant internalization of both tc- and LNA-oligonucleotides. The obtained results confirm the power of tricyclo-DNA for nuclear antisense applications. Morover, CyPA may become an interesting therapeutic target due to its important role in the early steps of the viral replication of HIV-1.
Resumo:
Congenital distal renal tubular acidosis (dRTA) from mutations of the B1 subunit of the V-ATPase is considered an autosomal recessive disease. We analyzed a dRTA kindred with a truncation-mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of the V-ATPase. All heterozygous carriers in this kindred have normal plasma bicarbonate concentrations, thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria are present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also have inappropriate urinary acidification with acute ammonium chloride loading and impaired urine-blood pCO2 gradient during bicarbonaturia indicating presence of H+ gradient and flux defects. In normal human renal papillae, wild type B1 is located primarily on the plasma membrane but papilla from one of the heterozygote who had kidney stones had renal tissue secured from surgery showed B1 in both plasma membrane as well as a diffuse intracellular staining. Titrating increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+-pump activity of the wild type B1 in mammalian HEK293 cells and in V-ATPase-deficient S. cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of mutant B1 subunit; which cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia.
Resumo:
Introduction: Intervertebral disc degeneration is associated with loss of nucleus pulposus (NP) tissue and reduced disc height[1]. A number of therapies, including synthetic and natural biomaterials, have been developed to restore full disc function and to minimize the pain and disability caused by this disease. Fibrin-based biomaterials are used as a replacement for NP or as a cell carrier for tissue engineering approaches[2]. While the behavior of such gels is well-characterized from a material point of view, little is known about their contribution to intervertebral disc (IVD) restoration under dynamic loads. The aim of the present study is the evaluation of a hyaluronic acid fibrin-based hydrogel (ProCore) used to repair an in vitro model of disc degeneration under dynamic loading. Methods: In vitro model of disc degeneration was induced in intact coccygeal bovine IVD by papain digestion of the NP as previously described[3]. In order to characterize fibrin hydrogels, four experimental groups were considered: 1) intact IVD (control), 2) IVD injected with PBS, 3) injection of hydrogels in degenerative IVD and 4) injection of hydrogels in combination with human bone marrow-derived mesenchymal stem cells (MSC) in degenerative IVD. All of the groups were subjected to dynamic loading protocols consisting of 0.2MPa static compression superimposed with ±2° torsion at 0.2Hz for 8h per day and maintained for 7 days. Additionally, one group consisted of degenerative IVD injected with hydrogel and subjected to static compression. Disc heights were monitored after the duration of the loading and compared to the initial disc height. The macrostructure of the formed tissue and the cellular distribution was evaluated by histological means. Results: After one week of loading, the degenerative IVD filled with hydrogel in combination with MSC (dynamic load), hydrogels (dynamic load) and hydrogels (static load) showed a reduction in height by 30%, 15% and 20%, respectively, as compared to their initial disc height. Histological sections showed that the HA-fibrin gel fully occupied the nucleotomized region of the disc and that fibrin was effective in filling the discontinuities of the cavity region. Furthermore, the cells were homogenously distributed along the fibrin hydrogels after 7 days of loading. Discussion: In this study, we showed that fibrin hydrogels showed a good integration within the papain-induced model of disc degeneration and can withstand the applied loads. Fibrin hydrogels can contribute to disc restoration by possibly maintaining adequate stiffness of the tissue and thus preventing disorganization of the surrounding IVD. References: 1. Jarman, J.P., Arpinar, V.E., Baruah, D., Klein, A.P., Maiman, D.J., and Tugan Muftuler, L. (2014). Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration. Eur Spine J . 2. Colombini, A., Ceriani, C., Banfi, G., Brayda-Bruno, M., and Moretti, M. (2014). Fibrin in intervertebral disc tissue engineering. Tissue Eng Part B Rev . 3. Chan, S.C., Bürki, A., Bonél, H.M., Benneker, L.M., and Gantenbein-Ritter, B. (2013). Papain-induced in vitro disc degeneration model for the study of injectable nucleus pulposus therapy. Spine J 13, 273-283. Acknowledgement We thank the Swiss National Science Foundation SNF #310030_153411 for funding.
Resumo:
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.
Resumo:
The spontaneously hypertensive rat (SHR) is a model of essential hypertension. During the early development of hypertension, the SHR demonstrates increased proximal tubule (PT) Na+ reabsorption. I hypothesized that the increased PT Na+ reabsorption exhibited by the young SHR was due to altered sub-cellular distribution of Na+, K +-ATPase compared to the normotensive Wistar Kyoto (WKY). The hypothesis is supported, herein, by observations of greater Na+, K +-ATPase α 1 abundance in PT plasma membrane and lower abundance in late endosomes of 4wk SHR despite no difference in total PT α 1 abundance. There is a greater amount of Ser-18 unphosphorylated α 1 in the 4wk SHR PT. Total PT Na+, K+-ATPase γ abundance is greater in SHR at 4wk and 16wk but γ abundance in plasma membrane is greater only at 4wk. The phosphatase, calcineurin, was chosen for study because it is involved in the stimulation of Na+, K +-ATPase. No difference in calcineurin coding sequence, expression, or activity was observed in SHR. Gene expression arrays were next used to find candidate genes involved in the regulation of Na+, K +-ATPase. The first candidate analyzed was soluble epoxide hydrolase (sEH). The gene encoding sEH (EPHX2) showed lower expression in SHR. There was also a reduction in sEH protein abundance but there was no correlation between protein abundance and blood pressure in F2 progeny. Two EPHX2 alleles were identified, an ancestral allele and a variant allele containing four polymorphisms. sEH activity was greater in animals carrying the variant allele but the inheritance of the variant allele did not correlate with blood pressure. Gene expression arrays also led to the examination of genes involved in redox balance/Na+, K+-ATPase regulation. A pattern of lower expression of genes involved in reactive radical detoxification in SHR was discerned. Six transcription factor binding sites were identified that occurred more often in these genes. Three transcription factors that bind to the HNF1 site were expressed at lower levels in SHR. This points to the HNF1 transcriptional complex as an important trans-acting regulator of a wide range of genes involved in altered redox balance in SHR. ^
Resumo:
Dendritic mRNA transport and local translation at individual potentiated synapses may represent an elegant way to form synaptic memory. Recently, we characterized Staufen, a double-stranded RNA-binding protein, in rat hippocampal neurons and showed its presence in large RNA-containing granules, which colocalize with microtubules in dendrites. In this paper, we transiently transfect hippocampal neurons with human Staufen-green fluorescent protein (GFP) and find fluorescent granules in the somatodendritic domain of these cells. Human Stau-GFP granules show the same cellular distribution and size and also contain RNA, as already shown for the endogenous Stau particles. In time-lapse videomicroscopy, we show the bidirectional movement of these Staufen-GFP–labeled granules from the cell body into dendrites and vice versa. The average speed of these particles was 6.4 μm/min with a maximum velocity of 24.3 μm/min. Moreover, we demonstrate that the observed assembly into granules and their subsequent dendritic movement is microtubule dependent. Taken together, we have characterized a novel, nonvesicular, microtubule-dependent transport pathway involving RNA-containing granules with Staufen as a core component. This is the first demonstration in living neurons of movement of an essential protein constituent of the mRNA transport machinery.
Resumo:
An obligatory role for estrogen in growth, development, and functions of the mammary gland is well established, but the roles of the two estrogen receptors remain unclear. With the use of specific antibodies, it was found that both estrogen receptors, ERα and ERβ, are expressed in the rat mammary gland but the presence and cellular distribution of the two receptors are distinct. In prepubertal rats, ERα was detected in 40% of the epithelial cell nuclei. This decreased to 30% at puberty and continued to decrease throughout pregnancy to a low of 5% at day 14. During lactation there was a large induction of ERα with up to 70% of the nuclei positive at day 21. Approximately 60–70% of epithelial cells expressed ERβ at all stages of breast development. Cells coexpressing ERα and ERβ were rare during pregnancy, a proliferative phase, but they represented up to 60% of the epithelial cells during lactation, a postproliferative phase. Western blot analysis and sucrose gradient centrifugation confirmed this pattern of expression. During pregnancy, the proliferating cell nuclear antigen was not expressed in ERα-positive cells but was observed in 3–7% of ERβ-containing cells. Because more than 90% of ERβ-bearing cells do not proliferate, and 55–70% of the dividing cells have neither ERα nor ERβ, it is clear that the presence of these receptors in epithelial cells is not a prerequisite for estrogen-mediated proliferation.
Resumo:
In cardiac myocytes Ca2+ cross-signaling between Ca2+ channels and ryanodine receptors takes place by exchange of Ca2+ signals in microdomains surrounding dyadic junctions, allowing first the activation and then the inactivation of the two Ca2+-transporting proteins. To explore the details of Ca2+ signaling between the two sets of receptors we measured the two-dimensional cellular distribution of Ca2+ at 240 Hz by using a novel confocal imaging technique. Ca2+ channel-triggered Ca2+ transients could be resolved into dynamic “Ca2+ stripes” composed of hundreds of discrete focal Ca2+ releases, appearing as bright fluorescence spots (radius ≅ 0.5 μm) at reproducible sites, which often coincided with t-tubules as visualized with fluorescent staining of the cell membrane. Focal Ca2+ releases triggered stochastically by Ca2+ current (ICa) changed little in duration (≅7 ms) and size (≅100,000 Ca ions) between −40 and +60 mV, but their frequency of activation and first latency mirrored the kinetics and voltage dependence of ICa. The resolution of 0.95 ± 0.13 reproducible focal Ca2+ release sites per μm3 in highly Ca2+-buffered cells, where diffusion of Ca2+ is limited to 50 nm, suggests the presence of about one independent, functional Ca2+ release site per half sarcomere. The density and distribution of Ca2+ release sites suggest they correspond to dyadic junctions. The abrupt onset and termination of focal Ca2+ releases indicate that the cluster of ryanodine receptors in individual dyadic junctions may operate in a coordinated fashion.
Resumo:
Genes encoding chemokine receptor-like proteins have been found in herpes and poxviruses and implicated in viral pathogenesis. Here we describe the cellular distribution and trafficking of a human cytomegalovirus (HCMV) chemokine receptor encoded by the US28 gene, after transient and stable expression in transfected HeLa and Cos cells. Immunofluorescence staining indicated that this viral protein accumulated intracellularly in vesicular structures in the perinuclear region of the cell and showed overlap with markers for endocytic organelles. By immunogold electron microscopy US28 was seen mostly to localize to multivesicular endosomes. A minor portion of the protein (at most 20%) was also expressed at the cell surface. Antibody-feeding experiments indicated that cell surface US28 undergoes constitutive ligand-independent endocytosis. Biochemical analysis with the use of iodinated ligands showed that US28 was rapidly internalized. The high-affinity ligand of US28, the CX3C-chemokine fractalkine, reduced the steady-state levels of US28 at the cell surface, apparently by inhibiting the recycling of internalized receptor. Endocytosis and cycling of HCMV US28 could play a role in the sequestration of host chemokines, thereby modulating antiviral immune responses. In addition, the distribution of US28 mainly on endosomal membranes may allow it to be incorporated into the viral envelope during HCMV assembly.
Resumo:
When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.
Resumo:
The presence of [arginine] vasopressin (AVP) mRNA and AVP immunoreactivity in pituicytes of the neural lobe (NL) of intact and pituitary stalk-transected rats, with and without osmotic stimulation, was examined. AVP mRNA was analyzed by Northern blotting, as well as by in situ hybridization in combination with immunocytochemistry using anti-glial fibrillary acidic protein (GFAP) as a marker for pituicytes. In intact rats, a poly(A) tail-truncated 0.62-kb AVP mRNA was detected in the NL and was found to increase 10-fold with 7 days of continuous salt loading. Morphological analysis of the NL of 7-day salt-loaded rats revealed the presence of AVP mRNA in a significant number of GFAP-positive pituicytes in the NL and in areas most probably containing nerve fibers. Eight days after pituitary stalk transection the NL AVP mRNA diminished in animals given water to drink, whereas in those given 2% saline for 18 h followed by 6 h of water, a treatment repeated on 6 successive days beginning 2 days after surgery, the 0.62-kb AVP mRNA was present. The AVP mRNA in the pituitary stalk-transected, salt-loaded rats showed an exclusive cellular distribution in the NL, indicative of localization in pituicytes. Immunoelectron microscopy showed the presence of AVP immunoreactivity in a subpopulation of pituicytes 7 and 10 days after pituitary stalk transection in salt-loaded animals, when almost all AVP fibers had disappeared from the NL. These data show that a subset of pituicytes in the NL is activated to synthesize AVP mRNA and AVP in response to osmotic stimulation.
Resumo:
Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype.
Resumo:
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.
Resumo:
As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. The GP is composed of a network of inhibitory GABA-containing projection neurons which receive GABAergic input from axons of the striatum (Str) and local collaterals of GP neurons. Here, using electrophysiological techniques and immunofluorescent labeling we have investigated the differential cellular distribution of a1, a2 and a3 GABAA receptor subunits in relation to striatopallidal (Str-GP) and pallidopallidal (GP-GP) synapses. Electrophysiological investigations showed that zolpidem (100 nm; selective for the a1 subunit) increased the amplitude and the decay time of both Str-GP and GP-GP IPSCs, indicating the presence of the a1 subunits at both synapses. However, the application of drugs selective for the a2, a3 and a5 subunits (zolpidem at 400 nm, L-838,417 and TP003) revealed differential effects on amplitude and decay time of IPSCs, suggesting the nonuniform distribution of non-a1 subunits. Immunofluorescence revealed widespread distribution of the a1 subunit at both soma and dendrites, while double- and triple-immunofluorescent labeling for parvalbumin, enkephalin, gephyrin and the ?2 subunit indicated strong immunoreactivity for GABAAa3 subunits in perisomatic synapses, a region mainly targeted by local axon collaterals. In contrast, immunoreactivity for synaptic GABAAa2 subunits was observed in dendritic compartments where striatal synapses are preferentially located. Due to the kinetic properties which each GABAAa subunit confers, this distribution is likely to contribute differentially to both physiological and pathological patterns of activity.