222 resultados para Ce3
Resumo:
The high-resolution emission spectra of KMgF3 : Eu and KMgF3 : Eu-Ce single crystals were measured at 77 K. The site substitution of Eu2+ and Eu2+-Ce3+ co-doped system in KMgF3 was discussed. Eu2+ substituted for K+ sites on three different site-symmetry: cubic, trigonal and tetragonal. The attribution of all lines occurring in the emission spectra were ascertained. The indirect energy transfer from P-6(5/2) states of Eu2+ to 4f5d states of Ce3+ in KMgF3 : Eu-Ce was observed and the energy transfer mechanism was studied. The d-d interaction among levels was proposed.
Energy transfer from Ce3+ to Eu2+ and electron transfer from Ce3+ to Eu3+ in BaY2F8 : Ce, Eu systems
Resumo:
Phorsphors of BaY2F8 : Ce3+, BaY2F8: EU2+ and BaY2F8 : Ce, Eu were prepared by higher temperature solid reaction and their excitation, emission and diffuse reflection spectra were made. We firstly found that the competition of energy transfer from Ce3+ to Eu2+ and electron transfer from Ce3+ to EU3+ existed in CeF3 and EuF3-co-doped BaY2F8 systems. The f-f transition emission of EU2+ was increased with increasing x in systems BaY2F8 : 0. 03Ce, xEU. Ce4+ ions coexist,with Ce3+ ions and substitute Y3+ for Ce4+ in the systems BaY2F8 : Eu, Cc.
Resumo:
The luminescence of Ce3+ and Ce3+, Mn2+ co-doped BaB8O13 and SrB4O7 prepared in air is studied. The results show that tetravalent cerium ion can he reduced to trivalent state in the hosts and gives rise to efficient luminescence. Energy transfer between Ce3+ and Mn2+ is possible. Mn2+ ions can be efficiently sensitized by Ce3+ and exhibit green and red emissions which implied that Mn2+ occupied the crystallographic sites of cations and boron sites of the anoins, respectively. The intensity ratio of red to Been emission in matrix increases with the increasing of manganese concentration.
Resumo:
Photoluminescence characteristics and the energy transfer between Ce3+ and Eu2+ in BaLiF3 host lattice have been investigated. A series of concentrations of Ce3+ ion with a fixed Eu2+ concentration in doubly doped BaLiF3:Ce3+,Eu2+ have been studied. According to the defects forming after Eu2+ and Ce3+ entering the host lattice, cerium ions occupy the positions of nearest neighbors of the europium ions. The energy transfer probability and critical distance are calculated. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Spectra properties of Ce3+ ions and Eu2+ ions in KZnF3 were studied and energy transfer from Ce3+ to Eu2+ was observed in co-doped with Ce3+ and Eu2+ systems. Quantum yields of energy transfer were calculated, The investigated mechanism of energy transfer is electric dipole-dipole interactions, We also noticed that the existence of Ce3+ is conductive to observe f-f transition emission of Eu2+ ions.
Resumo:
To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 under reducing atmosphere at 1250(j)ae. It is notable that the brightness of the sample with appropriate composition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a new high efficency green luminescent material was obtained with appropriate B2O3-content.
Resumo:
KMF3(M = Mg, Ca, Sr, Ba) compounds were synthesized by solid state reaction under argon atmosphere. Their structures were determined by X-ray diffraction. It belongs to cubic system with perovskite structure. The excitation and emission spectra of KMF3:Ce3+ were measured. According to the characteristics of spectral structures, the occupation site of Ce3+ is discussed.
Resumo:
The luminescence properties of Ce3+, Tb3+, Sm3+ and energy transfer from Ce3+ to Tb3+ were studied in two modifications of Y2SiO5 (low temperature X(1) type and high temperature X(2) type). The Ce3+ cation shows lower emission energy and larger Stokes shift in X(1)-Y2SiO5 than in X(2)-Y2SiO5, and the emission intensities of Ce3+, Tb3+, Sm3+ in the former are weaker than those in the latter. There exists an energy transfer from Ce3+ to Tb3+ in both types of Y2SiO5, and the transfer efficiency in X(2) type is higher than that in X(1) type. All of these results are discussed in relation to the crystal structure of Y2SiO5.
Resumo:
We report in this paper the spectral characteristics of Er3+ (2 at.%)-activated and Ce3+ (0.3 at.%)-sensitized yttrium aluminium garnet (YAG:Er,Ce) laser crystals grown by the Czochralski technique. The absorption and emission spectra were measured at room temperature. By using absorption spectra and Judd-Ofelt theory the experimental oscillator strengths of the Er3+ transitions in the YAG:Er,Ce crystals were calculated. The energy transfer between the Er3+ and Ce3+ ions is also discussed.
Resumo:
Emissions of europium (II) and europium (III) have been observed in SrMgF4:Eu and SrMgF4:Eu,Ce phosphors which are synthesized in Ar flow, It is notable that the intensity of the ESR peaks corresponding to Eu2+ is increased when cerium ion is incorporated which can be explained by electron transfer mechanism.
Resumo:
We synthesize some powder phosphors of CaF2:Ce3+ under different reaction conditions, find three luminous centres, and demonstrate that each luminous centre is formed with different charge compensation procedures.
Resumo:
With the method of high temperature solid state reaction and stockbarger, we synthesized a series of powder phosphors of KMgF3-Ce3+, KMg1-alphaMalphaF3-Ce3+(M = Be2+, Ca2+) and the single crystal of KMgF3-Ce3+. We tested their excitation and emission spectra, found two emission centers in KMgF3-Ce3+ and demonstrated that they resulted from different charge compensating ways. By the structural analysis on KMgF3-Ce-3+ from a four-cycle diffractometer and spectral analysis on KMg1-alphaMalphaF3-Ce3+(M = Be2+, Ca2+), we deduced that Ce3+ ion only.substituted K+ site in KMgF3.
Resumo:
Rare earth exchanged Na–Y zeolites, H-mordenite, K-10 montmorillonite clay and amorphous silica-alumina were effectively employed for the continuous synthesis of nitriles. Dehydration of benzaldoxime and 4-methoxybenzaldoxime were carried out on these catalysts at 473 K. Benzonitrile (dehydration product) was obtained in near quantitative yield with benzaldoxime whereas; 4-methoxybenzaldoxime produces both Beckmann rearrangement (4-methoxyphenylformamide) as well as dehydration products (4-methoxy benzonitrile) in quantitative yields. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream (TOS) studies show decline in the activity of the catalysts due to neutralization of acid sites by the basic reactant and product molecules and water formed during the dehydration of aldoximes.
Resumo:
In this paper, a novel application of solid acid catalysts in the Beckmann rearrangement of E,E-cinnamaldoxime in the synthesis of an important heterocyclic compound; isoquinoline is reported. E,E-Cinnamaldoxime under ambient reaction conditions on zeolite catalysts underwent Beckmann rearrangement to produce isoquinoline in yields of ca. 86–95%. Cinnamonitrile and cinnamaldehyde were formed as by-products. LaH-Y zeolite produces maximum amount of the desired product (yield 95.6%). However, the catalysts are susceptible for deactivation due to the basic nature of the reactants and products, which neutralize the active sites. H-Y zeolite is more susceptible (22% deactivation in 10 h) for deactivation compared to the cerium-exchanged counterpart (18% deactivation in 10 h). Thus, the optimal protocol allows isoquinoline to be synthesised in excellent yields through the Beckmann rearrangement of cinnamaldoxime. The reaction is simple, effective, does not involve any other additives, and environmentally benign.
Resumo:
The effect of Ce3+ on the fluorescence emission from CaS:Ce3+ phosphor is studied using X-ray excitation. Apart from the emission in the visible region, the phosphor also shows fluorescence emission in the ultraviolet region. Variation in wavelengths and intensities of these emissions due to change in dopant concentration is also analysed.